Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists may have succeeded in reproducing matter as it first appeared after the Big Bang

13.06.2003


Multi-National team of physicists include Weizmann Institute Scientists



Recent results of a joint experiment conducted by 460 physicists from 57 research institutions in 12 countries strongly indicate that the scientists have succeeded in reproducing matter as it first appeared in the universe; this matter is called the quark-gluon plasma. The experiment, called PHENIX and conducted at the Brookhaven National Laboratory on Long Island, New York, has brought together physicists from Brazil, China, France, Germany, Hungary, India, Israel, Japan, South Korea, Russia, Sweden and the United States. The Israeli team is led by Prof. Itzhak Tserruya, head of the Weizmann Institute’s Particle Physics Department. Tserruya and his colleagues have designed and built unique particle detectors that are a central part of PHENIX’s detecting system.

In the first millionth of a second after the Big Bang, the atoms of different elements as we know them today did not yet exist. The main components of atoms, protons and neutrons, had not yet been "born" either. The jets of blazing matter that dispersed in all directions in the first few fractions of a second in the existence of the universe contained a mixture of free quarks and gluons, called the quark-gluon plasma. Later on, when the universe cooled down a bit and became less dense, the quarks and gluons got "organized" into various combinations that created more complex particles, such as the protons and neutrons. Since then, in fact, quarks or gluons have not existed as free particles in the universe.


Scientists studying the unique physical properties of the quark-gluon plasma have been trying to recreate this primordial matter using an accelerator, called RHIC, built especially for this purpose at the Brookhaven National Laboratory. This accelerator creates two beams of gold ions and accelerates them one towards the other, causing a head-on collision. The power of the collisions (about 40 trillion electron volts, also termed 40 tera electron volts) turns part of the beams’ kinetic energy into heat, while the other part of the energy turns into various particles (a process described by Einstein’s well-known equation E=mc2). The first stage in the creation of these new particles, like the first stage of the creation of matter in the Big Bang, is assumed to be the stage of the quark-gluon plasma.

One of the ways to identify the quark-gluon plasma is to observe the behavior of particles entering the plasma. When a single quark propagates through regular matter (containing protons and neutrons), it emits radiation that slows down its progress somewhat. In contrast, when it enters a very dense medium like quark-gluon plasma, it will slow down much more. That’s precisely the phenomenon that has recently been observed and analyzed in the PHENIX experiment. According to the physicists taking part in the experiment, these findings could indicate that they have succeeded in creating the quark-gluon plasma.

The detectors designed and built by Prof. Tserruya are capable of providing three-dimensional information on the precise location of the particles ejected from the collision area. These particles’ direction, together with their energy and identity, help distinguish the matter’s properties in the collision area. Apart from Prof. Tserruya, the Weizmann team that designed and built the detectors included Prof. Zeev Fraenkel, Dr. Ilia Ravinovich, postdoctoral fellow Dr. Wei Xie and graduate students Alexandre Kozlov, Alexander Milov and Alexander Cherlin.

Prof. Tserruya’s research is supported by Nella and Leon Benoziyo Center for High Energy Physics.

Prof. Tserruya is the incumbent of the Samuel Sebba Professorial Chair of Pure and Applied Physics.


The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>