Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indiana University scientists first to detect rare nuclear fusion violating charge symmetry

07.04.2003


This symmetry violation makes hydrogen possible, a requirement for life

Scientists at the Indiana University Cyclotron Facility in Bloomington have made the first unambiguous detection of a rare process, the fusion of two nuclei of heavy hydrogen to form a nucleus of helium and an uncharged pion. The pion is one of the subatomic particles responsible for the strong force that holds every nucleus together. The achievement will be announced Saturday (April 5) at the meeting of the American Physical Society in Philadelphia.

"Scientists have searched for this rare fusion process since the 1950s," said IU physicist Edward Stephenson, the leader of the research team. "The process would not happen at all if nature did not allow a small violation of what is known as charge symmetry. If this symmetry violation had happened to be in the other direction, hydrogen would not have survived after the Big Bang, and the universe would not have the hydrogen fuel that keeps stars shining, including our sun, making human life possible. Sometimes large consequences hang on delicate balances in nature."



One effect of this charge symmetry violation is that the neutron is slightly heavier than its charged partner, the proton. As a result, isolated neutrons decay into protons in about 10 minutes. "If the charge symmetry violation had been in the other direction instead, and if the proton had been heavier than the neutron by the same slight amount, protons would have decayed into neutrons and hydrogen could not have survived," Stephenson explained.

The rate at which the rare fusion process occurs is expected to be a key piece of information in finding the cause for this violation of charge symmetry, he said. Theorists have proposed that the violation originates with quarks, the small particles that are found inside protons and neutrons.

"The rate of the process will tell scientists how much of the violation comes from the fact that quarks carry small electrical charges, and how much comes from the difference in mass between the two types of quarks found inside neutrons and protons," Stephenson said.

The IU team used the electron-cooled storage ring at the cyclotron laboratory to focus a beam of heavy hydrogen onto a target of the same material. The high precision of the beam allowed them to use just enough energy to make the uncharged pion without producing unwanted heavier particles. Sensitive detectors tracked the helium nuclei and captured the two photons or particles of light that are produced when the pion decays.

The team worked around the clock for two months, seeing at most only five of the rare events per day, Stephenson said. However, the several dozen events that they collected will be enough to allow scientists to test their theories about the violation of charge symmtery.


Their research was supported by a grant from the National Science Foundation.

For more information, contact Stephenson at 812-855-5469 or stephens@iucf.indiana.edu.

Hal Kibbey | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>