Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indiana University scientists first to detect rare nuclear fusion violating charge symmetry

07.04.2003


This symmetry violation makes hydrogen possible, a requirement for life

Scientists at the Indiana University Cyclotron Facility in Bloomington have made the first unambiguous detection of a rare process, the fusion of two nuclei of heavy hydrogen to form a nucleus of helium and an uncharged pion. The pion is one of the subatomic particles responsible for the strong force that holds every nucleus together. The achievement will be announced Saturday (April 5) at the meeting of the American Physical Society in Philadelphia.

"Scientists have searched for this rare fusion process since the 1950s," said IU physicist Edward Stephenson, the leader of the research team. "The process would not happen at all if nature did not allow a small violation of what is known as charge symmetry. If this symmetry violation had happened to be in the other direction, hydrogen would not have survived after the Big Bang, and the universe would not have the hydrogen fuel that keeps stars shining, including our sun, making human life possible. Sometimes large consequences hang on delicate balances in nature."



One effect of this charge symmetry violation is that the neutron is slightly heavier than its charged partner, the proton. As a result, isolated neutrons decay into protons in about 10 minutes. "If the charge symmetry violation had been in the other direction instead, and if the proton had been heavier than the neutron by the same slight amount, protons would have decayed into neutrons and hydrogen could not have survived," Stephenson explained.

The rate at which the rare fusion process occurs is expected to be a key piece of information in finding the cause for this violation of charge symmetry, he said. Theorists have proposed that the violation originates with quarks, the small particles that are found inside protons and neutrons.

"The rate of the process will tell scientists how much of the violation comes from the fact that quarks carry small electrical charges, and how much comes from the difference in mass between the two types of quarks found inside neutrons and protons," Stephenson said.

The IU team used the electron-cooled storage ring at the cyclotron laboratory to focus a beam of heavy hydrogen onto a target of the same material. The high precision of the beam allowed them to use just enough energy to make the uncharged pion without producing unwanted heavier particles. Sensitive detectors tracked the helium nuclei and captured the two photons or particles of light that are produced when the pion decays.

The team worked around the clock for two months, seeing at most only five of the rare events per day, Stephenson said. However, the several dozen events that they collected will be enough to allow scientists to test their theories about the violation of charge symmtery.


Their research was supported by a grant from the National Science Foundation.

For more information, contact Stephenson at 812-855-5469 or stephens@iucf.indiana.edu.

Hal Kibbey | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>