Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extremely large astronomical telescopes a step closer


Astronomers think big all the time: it’s their job. And on 13th December, at a meeting hosted by the Royal Astronomical Society in London, a group of them will juggle with some truly astounding large numbers. On this occasion, though, they won’t be discussing the distances to remote galaxies, but the phenomenal sizes of the telescopes they want to build so they can explore the universe to a level of detail previous generations of astronomers would never have dreamt possible. Announcing a significant development, Professor Gerry Gilmore of Cambridge University will tell the meeting that Europe’s astronomers have just agreed to join forces in a single project to design a new generation of ground-based optical/infrared telescopes, the Extremely Large Telescope.

The largest telescopes operating currently (the two Keck Telescopes in Hawaii) have segmented mirrors 10 metres across. Now, astronomers around the world are working towards a giant leap for astronomy - ’extremely large telescopes’ (ELTs) up to 100 metres across, 10 times bigger than the Kecks. According to Dr Adrian Russell, Director of the UK Astronomy Technology Centre (UK ATC) in Edinburgh, a telescope that large will take up more glass than has been used in all the telescopes built in the history of astronomy put together.

In Europe, several projects have been under study for some years, each aimed at identifying the key technological and organisational advances that must be met to achieve such a big step . From this month, the two main projects - Euro-50, led from Sweden, and OWL, led from the European Southern Observatory (ESO) - are joining forces with colleagues throughout Europe to create a single project, which will develop a proposal for substantial additional funding from the European Union.

"An ELT facility will revolutionise astronomy with its ability to collect light from faint objects and distinguish details in its images that have never been seen before", says Eli Atad who is Head of the Applied Optics Group at the UK ATC and co-organiser of the meeting.

But ELTs are not just desirable, say astronomers: they are vital. The key to understanding a remote astronomical object is its spectrum. Collecting enough light to spread into a spectrum requires a much larger telescope than recording an ordinary image. "The largest telescopes we have today are struggling to obtain spectra of the faintest objects observable with the Hubble Space Telescope," says Dr Tim Hawarden, Project Scientist for ELTs at the ATC and a speaker at the meeting. "Hubble’s successor, the James Webb Space Telescope, begins operation in less than 10 years. It will discover objects much fainter than Hubble can see and the problem of acquiring spectra will get ten times worse. To make the most of discoveries with the James Webb Space Telescope, it’s essential to have ELTs operating on the ground at the same time."

As is the case with the Keck Telescopes, the mirrors of the Extremely Large Telescopes of the future will not be a single huge disc of glass, but will consist of thousands of hexagonal glass ’tiles’. "The technology exists", says Eli Atad, "but the mass production of mirror segments is a challenge."

"We have to prove that the key technologies are viable and affordable," says Gerry Gilmore, who chairs the steering committee for the new combined European ELT project. "In particular, we have to demonstrate that the huge number of components needed for an ELT can be built taking advantage of industrial-scale efficiencies. The challenge is as much managerial and industrial as it is technical. But it must be met if Europe’s astronomers are to have the tools they need to keep abreast of international scientific developments."

"The potential payoffs from ELTs can fairly be described as awesome" says Tim Hawarden. "For example, we may be able to see Earth-like planets, if there are any, in orbit around stars up to tens of light years away, and perhaps even find out what their atmospheres are made of. Just how large we can make the new giant telescopes is still a matter for debate, and that is part of what the meeting on 13th December is all about."

Jacqueline Mitton | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>