Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extremely large astronomical telescopes a step closer

05.12.2002


Astronomers think big all the time: it’s their job. And on 13th December, at a meeting hosted by the Royal Astronomical Society in London, a group of them will juggle with some truly astounding large numbers. On this occasion, though, they won’t be discussing the distances to remote galaxies, but the phenomenal sizes of the telescopes they want to build so they can explore the universe to a level of detail previous generations of astronomers would never have dreamt possible. Announcing a significant development, Professor Gerry Gilmore of Cambridge University will tell the meeting that Europe’s astronomers have just agreed to join forces in a single project to design a new generation of ground-based optical/infrared telescopes, the Extremely Large Telescope.



The largest telescopes operating currently (the two Keck Telescopes in Hawaii) have segmented mirrors 10 metres across. Now, astronomers around the world are working towards a giant leap for astronomy - ’extremely large telescopes’ (ELTs) up to 100 metres across, 10 times bigger than the Kecks. According to Dr Adrian Russell, Director of the UK Astronomy Technology Centre (UK ATC) in Edinburgh, a telescope that large will take up more glass than has been used in all the telescopes built in the history of astronomy put together.

In Europe, several projects have been under study for some years, each aimed at identifying the key technological and organisational advances that must be met to achieve such a big step . From this month, the two main projects - Euro-50, led from Sweden, and OWL, led from the European Southern Observatory (ESO) - are joining forces with colleagues throughout Europe to create a single project, which will develop a proposal for substantial additional funding from the European Union.


"An ELT facility will revolutionise astronomy with its ability to collect light from faint objects and distinguish details in its images that have never been seen before", says Eli Atad who is Head of the Applied Optics Group at the UK ATC and co-organiser of the meeting.

But ELTs are not just desirable, say astronomers: they are vital. The key to understanding a remote astronomical object is its spectrum. Collecting enough light to spread into a spectrum requires a much larger telescope than recording an ordinary image. "The largest telescopes we have today are struggling to obtain spectra of the faintest objects observable with the Hubble Space Telescope," says Dr Tim Hawarden, Project Scientist for ELTs at the ATC and a speaker at the meeting. "Hubble’s successor, the James Webb Space Telescope, begins operation in less than 10 years. It will discover objects much fainter than Hubble can see and the problem of acquiring spectra will get ten times worse. To make the most of discoveries with the James Webb Space Telescope, it’s essential to have ELTs operating on the ground at the same time."

As is the case with the Keck Telescopes, the mirrors of the Extremely Large Telescopes of the future will not be a single huge disc of glass, but will consist of thousands of hexagonal glass ’tiles’. "The technology exists", says Eli Atad, "but the mass production of mirror segments is a challenge."

"We have to prove that the key technologies are viable and affordable," says Gerry Gilmore, who chairs the steering committee for the new combined European ELT project. "In particular, we have to demonstrate that the huge number of components needed for an ELT can be built taking advantage of industrial-scale efficiencies. The challenge is as much managerial and industrial as it is technical. But it must be met if Europe’s astronomers are to have the tools they need to keep abreast of international scientific developments."

"The potential payoffs from ELTs can fairly be described as awesome" says Tim Hawarden. "For example, we may be able to see Earth-like planets, if there are any, in orbit around stars up to tens of light years away, and perhaps even find out what their atmospheres are made of. Just how large we can make the new giant telescopes is still a matter for debate, and that is part of what the meeting on 13th December is all about."

Jacqueline Mitton | alfa
Further information:
http://www.roe.ac.uk/atc/ras2002/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>