Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extremely large astronomical telescopes a step closer

05.12.2002


Astronomers think big all the time: it’s their job. And on 13th December, at a meeting hosted by the Royal Astronomical Society in London, a group of them will juggle with some truly astounding large numbers. On this occasion, though, they won’t be discussing the distances to remote galaxies, but the phenomenal sizes of the telescopes they want to build so they can explore the universe to a level of detail previous generations of astronomers would never have dreamt possible. Announcing a significant development, Professor Gerry Gilmore of Cambridge University will tell the meeting that Europe’s astronomers have just agreed to join forces in a single project to design a new generation of ground-based optical/infrared telescopes, the Extremely Large Telescope.



The largest telescopes operating currently (the two Keck Telescopes in Hawaii) have segmented mirrors 10 metres across. Now, astronomers around the world are working towards a giant leap for astronomy - ’extremely large telescopes’ (ELTs) up to 100 metres across, 10 times bigger than the Kecks. According to Dr Adrian Russell, Director of the UK Astronomy Technology Centre (UK ATC) in Edinburgh, a telescope that large will take up more glass than has been used in all the telescopes built in the history of astronomy put together.

In Europe, several projects have been under study for some years, each aimed at identifying the key technological and organisational advances that must be met to achieve such a big step . From this month, the two main projects - Euro-50, led from Sweden, and OWL, led from the European Southern Observatory (ESO) - are joining forces with colleagues throughout Europe to create a single project, which will develop a proposal for substantial additional funding from the European Union.


"An ELT facility will revolutionise astronomy with its ability to collect light from faint objects and distinguish details in its images that have never been seen before", says Eli Atad who is Head of the Applied Optics Group at the UK ATC and co-organiser of the meeting.

But ELTs are not just desirable, say astronomers: they are vital. The key to understanding a remote astronomical object is its spectrum. Collecting enough light to spread into a spectrum requires a much larger telescope than recording an ordinary image. "The largest telescopes we have today are struggling to obtain spectra of the faintest objects observable with the Hubble Space Telescope," says Dr Tim Hawarden, Project Scientist for ELTs at the ATC and a speaker at the meeting. "Hubble’s successor, the James Webb Space Telescope, begins operation in less than 10 years. It will discover objects much fainter than Hubble can see and the problem of acquiring spectra will get ten times worse. To make the most of discoveries with the James Webb Space Telescope, it’s essential to have ELTs operating on the ground at the same time."

As is the case with the Keck Telescopes, the mirrors of the Extremely Large Telescopes of the future will not be a single huge disc of glass, but will consist of thousands of hexagonal glass ’tiles’. "The technology exists", says Eli Atad, "but the mass production of mirror segments is a challenge."

"We have to prove that the key technologies are viable and affordable," says Gerry Gilmore, who chairs the steering committee for the new combined European ELT project. "In particular, we have to demonstrate that the huge number of components needed for an ELT can be built taking advantage of industrial-scale efficiencies. The challenge is as much managerial and industrial as it is technical. But it must be met if Europe’s astronomers are to have the tools they need to keep abreast of international scientific developments."

"The potential payoffs from ELTs can fairly be described as awesome" says Tim Hawarden. "For example, we may be able to see Earth-like planets, if there are any, in orbit around stars up to tens of light years away, and perhaps even find out what their atmospheres are made of. Just how large we can make the new giant telescopes is still a matter for debate, and that is part of what the meeting on 13th December is all about."

Jacqueline Mitton | alfa
Further information:
http://www.roe.ac.uk/atc/ras2002/

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks