Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays squeeze fuel to generate nuclear fusion energy

08.11.2002


Working toward the vision of generating clean energy from nuclear fusion, researchers have successfully imploded fuel capsules by bombarding them with intense x-rays. The results show that the process generates significant fusion and that the implosion method looks capable of generating large-scale energy production.



The process works by bombarding two millimeter (about 1/16th inch) fuel capsules with intense x-rays from Sandia National Laboratories Z-pinch machine. The x-rays, impacting from all directions, cause an implosion that reduces the capsule’s size by a factor of ten (see images). This implosion needs to be symmetrical or else the capsules will break apart and fusion won’t take place. In one set of experiments, a high degree of symmetry has been achieved in the implosion process, indicating that the process might be scaled up to energy production levels. In another set of experiments using the Z-pinch, researchers observed significant production of neutrons, a sign of nuclear fusion.

These successful experiments are an important step toward ignition, the level at which the fusion reaction becomes self-sustaining and excess energy can be drawn from the process for other applications.


Contacts
Tom Mehlhorn, Sandia National Labs, 505-845-7266, tamehlh@sandia.gov
John Porter, 505-845-7526, jlporte@sandia.gov

David Harris | EurekAlert!
Further information:
http://www.aps.org/meet/DPP02/baps/press/press3.html
http://www.aps.org/meet/DPP02/baps/abs/S850001.html
http://www.aps.org/meet/DPP02/baps/abs/S1200146.html

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>