Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy Merger Leaves Behind Telltale Blue Arc

18.10.2002


Astronomers have identified the vivid scar of a cosmic catastrophe: a blue arc thousands of light years long produced when a galaxy pulled in a smaller satellite galaxy and tore it apart.


Visible in the upper right corner of this image of the Centaurus A Galaxy is an arc of blue stars left behind when Centaurus A pulled in a smaller galaxy and tore it apart. Astronomers say the scar from this cosmic collision is fairly new and thousands of light years long.
Note: Image is available without arrows. Follow this link.
Photo by Eric Peng/JHU/NOAO



The streak is composed of clusters of young blue stars that formed as the larger galaxy, Centaurus A, absorbed the smaller galaxy about 200 million to 400 million years ago. Researchers will report in the December Astronomical Journal that their discovery suggests absorption of smaller galaxies may be a significant contributor to the formation of galactic halos, outer perimeters of galaxies where star populations are sparse.

"This adds a nice example in the local universe to the growing evidence that galaxy halos are built up from the accretion of dwarf satellite galaxies," said Eric Peng, a graduate student in astronomy in the Krieger School of Arts and Sciences at The Johns Hopkins University and lead author of the new paper. "These halos are interesting partly because they’re hard to study, but also because time scales for things to happen in halos are very long, which means they may preserve conditions that reveal how a galaxy formed and evolved."


Peng and his colleagues found the streak in specially processed digital images of Centaurus A taken at the National Science Foundation’s Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory near La Serena, Chile. The team made its observations in 2000.

At 10 million light years from our galaxy, Centaurus A (which is visible with binoculars in the southern hemisphere’s night sky, but not visible at all in the northern hemisphere) is quite close in galactic terms. The galaxy’s most prominent features include a central lane of dust and debris, and signs of violent activity on its perimeter that are suggestive of a prior galactic merger.

Astronomers had previously noticed the arc that Peng and colleagues have now identified as a galactic merger remnant, but without recognizing its origin. That took evidence Peng and colleagues gathered with Mosaic II, a new wide-field digital camera at the Blanco Telescope funded by the National Optical Astronomy Observatory.

Peng and fellow researchers Holland Ford, a professor of astronomy at Johns Hopkins; Ken Freeman, a professor at the Australian National University; and Rick White, astronomer at the Space Telescope Science Institute, used Mosaic II to create images of Centaurus A through several different color filters. Comparing these images highlighted regions of the galaxy that have different colors, and revealed the predominance of young blue stars in the arc. This allowed Peng and his colleagues to identify the arc as a remnant of a galactic merger and estimate the time when Centaurus A absorbed it.

Astronomers have identified similar remnants of galactic mergers in various stages of ingestion into the Milky Way, including the Sagittarius Galaxy. Peng said the newly identified remnant in Centaurus A is unusual in terms of both how recently the merger took place and how gas-rich the satellite galaxy appears to have been.

Ford noted that the group hadn’t originally set out to find remnants of dwarf galaxies.

"One of the joys of science is unexpected discoveries," Ford said. "Although our pictures were taken for another project, we decided to search the data for evidence of ’shredded’ dwarf galaxies. We were very excited when the blue arc popped out of one of the images."

Peng noted that the remnant cannot account for all the signs of prior galactic merger activity seen in Centaurus A. As an elliptical (or roughly football- shaped) galaxy, Centaurus A was likely produced by the merger of two large galaxies.

"It’s possible that the small galaxy that was recently accreted by Centaurus A was originally a satellite orbiting one of the large galaxies involved in that larger merger," says Peng. "Just like when our galaxy merges with the Andromeda Galaxy in the distant future -- the Milky Way’s satellite galaxies, such as the Magellanic Clouds, will likely be involved in that merger."

Peng and other researchers are currently looking for other signs of remnants elsewhere in Centaurus A, and planning for follow-up observations on the arc they identified as a galactic remnant.

"If we can get the velocities of star clusters in the arc and map out the orbit, that will allow us to place better constraints on how long ago the merger occurred and on what the motions of the incoming galaxy were," Peng says.

Michael Purdy | EurekAlert!

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>