Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A nanosecond to make a decision

04.10.2002


The scientists at A.F. Ioffe Physical Technical Institute, Russian Academy of Sciences, decided to restore the production of semi-conductor devices for pulse radiotechniques which was interrupted at the beginning of the 1990s. These devices have recently found wide application in different areas of technology: in ultra broadband apparatuses of communication, geopositioning and following, radars where a signal of high power should be generated for short time intervals. The idea of creating the devices belongs to a group of scientists under the supervision of Kardo-Sysoev.



It is possible to transfer information using very short electrical pulses with the duration less than one nanosecond. The pause between the adjacent pulses is also very short and therefore the volume of information can be enormous. However, powerful transmitters are necessary to send these signals for distances more than 10-15 kilometers. The task has been solved at the laboratory of fast processes at A.F. Ioffe Physical Technical Institute, Russian Academy of Sciences, where a new class of diodes and transistors has been developed. Their combination in the scheme gives the necessary transmitter, the source of ultra short signals in ultra broadband range.

Industrial production of these devices does not exist anywhere in the world for a while but the appropriate market with a turnover of several billion dollars should appear very soon. Russian scientists have a great advantage over their partners from other countries because a significant and unique experience has been accumulated in Russia for many years. "Of course, our western colleagues will catch up with us but at the moment our technologies are more advanced and it pays to buy the devices for ultra broadband systems in Russia. - says Kardo-Sysoev - All the air ultra broadband radars of super high resolution in the USA use our devices."


In addition to the application in the sphere of communications St. Petersburg technology has other interesting uses. The devices can work in the locators with broad sphere of application because it covers broad radio range and if one frequency can not get through a material another one will be able to do it. Such a locator can work inside a building and see through the walls or define correctly the position and condition of underground communications. According to this principle ultra sensitive censors for security systems and the systems of determining coordinates and distances within the accuracy of a centimeter can be designed. The devices can also find an application in the systems for cleaning gases with pulse discharges where the voltage of tens of kilovolts and the electrical power of tens of megawatts are demanded.

Tatiana Pitchugina | Informnauka
Further information:
http://www.informnauka.ru/eng/2002/2002-10-03-02_218_e.htm

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>