Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A nanosecond to make a decision

04.10.2002


The scientists at A.F. Ioffe Physical Technical Institute, Russian Academy of Sciences, decided to restore the production of semi-conductor devices for pulse radiotechniques which was interrupted at the beginning of the 1990s. These devices have recently found wide application in different areas of technology: in ultra broadband apparatuses of communication, geopositioning and following, radars where a signal of high power should be generated for short time intervals. The idea of creating the devices belongs to a group of scientists under the supervision of Kardo-Sysoev.



It is possible to transfer information using very short electrical pulses with the duration less than one nanosecond. The pause between the adjacent pulses is also very short and therefore the volume of information can be enormous. However, powerful transmitters are necessary to send these signals for distances more than 10-15 kilometers. The task has been solved at the laboratory of fast processes at A.F. Ioffe Physical Technical Institute, Russian Academy of Sciences, where a new class of diodes and transistors has been developed. Their combination in the scheme gives the necessary transmitter, the source of ultra short signals in ultra broadband range.

Industrial production of these devices does not exist anywhere in the world for a while but the appropriate market with a turnover of several billion dollars should appear very soon. Russian scientists have a great advantage over their partners from other countries because a significant and unique experience has been accumulated in Russia for many years. "Of course, our western colleagues will catch up with us but at the moment our technologies are more advanced and it pays to buy the devices for ultra broadband systems in Russia. - says Kardo-Sysoev - All the air ultra broadband radars of super high resolution in the USA use our devices."


In addition to the application in the sphere of communications St. Petersburg technology has other interesting uses. The devices can work in the locators with broad sphere of application because it covers broad radio range and if one frequency can not get through a material another one will be able to do it. Such a locator can work inside a building and see through the walls or define correctly the position and condition of underground communications. According to this principle ultra sensitive censors for security systems and the systems of determining coordinates and distances within the accuracy of a centimeter can be designed. The devices can also find an application in the systems for cleaning gases with pulse discharges where the voltage of tens of kilovolts and the electrical power of tens of megawatts are demanded.

Tatiana Pitchugina | Informnauka
Further information:
http://www.informnauka.ru/eng/2002/2002-10-03-02_218_e.htm

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>