A nanosecond to make a decision

The scientists at A.F. Ioffe Physical Technical Institute, Russian Academy of Sciences, decided to restore the production of semi-conductor devices for pulse radiotechniques which was interrupted at the beginning of the 1990s. These devices have recently found wide application in different areas of technology: in ultra broadband apparatuses of communication, geopositioning and following, radars where a signal of high power should be generated for short time intervals. The idea of creating the devices belongs to a group of scientists under the supervision of Kardo-Sysoev.

It is possible to transfer information using very short electrical pulses with the duration less than one nanosecond. The pause between the adjacent pulses is also very short and therefore the volume of information can be enormous. However, powerful transmitters are necessary to send these signals for distances more than 10-15 kilometers. The task has been solved at the laboratory of fast processes at A.F. Ioffe Physical Technical Institute, Russian Academy of Sciences, where a new class of diodes and transistors has been developed. Their combination in the scheme gives the necessary transmitter, the source of ultra short signals in ultra broadband range.

Industrial production of these devices does not exist anywhere in the world for a while but the appropriate market with a turnover of several billion dollars should appear very soon. Russian scientists have a great advantage over their partners from other countries because a significant and unique experience has been accumulated in Russia for many years. “Of course, our western colleagues will catch up with us but at the moment our technologies are more advanced and it pays to buy the devices for ultra broadband systems in Russia. – says Kardo-Sysoev – All the air ultra broadband radars of super high resolution in the USA use our devices.”

In addition to the application in the sphere of communications St. Petersburg technology has other interesting uses. The devices can work in the locators with broad sphere of application because it covers broad radio range and if one frequency can not get through a material another one will be able to do it. Such a locator can work inside a building and see through the walls or define correctly the position and condition of underground communications. According to this principle ultra sensitive censors for security systems and the systems of determining coordinates and distances within the accuracy of a centimeter can be designed. The devices can also find an application in the systems for cleaning gases with pulse discharges where the voltage of tens of kilovolts and the electrical power of tens of megawatts are demanded.

Media Contact

Tatiana Pitchugina Informnauka

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors