Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thousands of cold anti-atoms produced at CERN

19.09.2002


An international team of physicists working at the Antiproton Decelerator (AD) facility at CERN has announced the first controlled production of large numbers of antihydrogen atoms at low energies. After mixing cold clouds of trapped positrons and antiprotons - the antiparticles of the familiar electron and proton - under closely monitored conditions, the ATHENA collaboration has identified antihydrogen atoms, formed when positrons bind together with antiprotons. The results are published online today by the journal Nature.



Says Professor Luciano Maiani, Director General of CERN, "The controlled production of antihydrogen observed in ATHENA is a great technological and scientific event. Even more so because ATHENA has produced antihydrogen in unexpectedly abundant quantities. I’d like also to recognise the contribution of the ATRAP experiment at CERN, which has pioneered the technology of trapping cold antiprotons and positrons, an essential step towards the present discovery."

The ATHENA experiment, which is run by a collaboration of 39 scientists from 9 different institutions worldwide, saw its first clear signals for antihydrogen in August - appropriately, the 100th anniversary of the birth of theorist Paul Dirac who predicted the existence of antimatter in the late 1920s. Says ATHENA spokesman, Rolf Landua,"The experiment is a major milestone in antimatter science and an important first step on the road to high precision comparisons of hydrogen and antihydrogen. Such measurements will provide information vital to our understanding of the Universe and in particular why nature has a preference for matter over antimatter."


The method ATHENA uses overcomes the two main limitations of previous experiments both at CERN and at Fermilab in the US, which produced only a few anti-atoms per day with velocities close to the speed of light. First, the AD takes high energy antiprotons and slows them down to the leisurely pace - by CERN’s standards - of a tenth of the speed of light. ATHENA then traps the antiprotons in a "cage" created by electromagnetic fields, and reduces their velocity further to a few millionths of the speed of light. The ATHENA apparatus captures and slows down - or "cools" - about 10,000 antiprotons from each bunch that arrives from the AD. The next stage is to mix them with about 75 million cold positrons. These are collected from the decay of a radioactive isotope, then caught within a second trap, and finally transferred to a third, "mixing" trap. It is here that cold - that is, very slow - antihydrogen atoms may form.

Central to ATHENA’s observations is the antihydrogen annihilation detector, which surrounds the trap where the antiprotons and positrons are mixed. When a positron and an antiproton bind together to form a neutral antihydrogen atom, it escapes the trapping electromagnetic fields, which are set up by metal electrodes. The anti-atom then strikes one of the electrodes, and the positron and antiproton annihilate separately, with an electron and a proton, respectively, in the surface of the metal.

The detector provides unambiguous evidence for antihydrogen by detecting the simultaneous annihilations of the antiproton and the positron, which occur at the same time and at the same position. ATHENA finds that several anti-atoms per second are produced on average during the procedure that mixes the positrons and antiprotons. So far the experiment has produced about 50,000 antihydrogen atoms.

ATHENA is one of two experiments set up to search for cold antihydrogen at the AD. Last year the ATRAP experiment was the first to use cold positrons to cool antiprotons. The experiment also successfully confined both ingredients of cold antihydrogen in the same trap structure. This simultaneous trapping of positrons and antiprotons was first demonstrated by TRAP, the predecessor to ATRAP, which operated on the Low Energy Antiproton Ring (LEAR) at CERN.

These breakthroughs at CERN are important milestones on the way to trapping, accumulating and cooling antihydrogen. Cold antihydrogen will be a new tool for precision studies in a broad range of science. Most fundamental will be the comparison of the interaction of hydrogen and antihydrogen with electromagnetic and gravitational fields. Any difference between matter and antimatter, however small, would have profound consequences for our fundamental understanding of Nature and the Universe.

Christine Sutton | alfa
Further information:
http://info.web.cern.ch/info/Press/

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>