Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thousands of cold anti-atoms produced at CERN

19.09.2002


An international team of physicists working at the Antiproton Decelerator (AD) facility at CERN has announced the first controlled production of large numbers of antihydrogen atoms at low energies. After mixing cold clouds of trapped positrons and antiprotons - the antiparticles of the familiar electron and proton - under closely monitored conditions, the ATHENA collaboration has identified antihydrogen atoms, formed when positrons bind together with antiprotons. The results are published online today by the journal Nature.



Says Professor Luciano Maiani, Director General of CERN, "The controlled production of antihydrogen observed in ATHENA is a great technological and scientific event. Even more so because ATHENA has produced antihydrogen in unexpectedly abundant quantities. I’d like also to recognise the contribution of the ATRAP experiment at CERN, which has pioneered the technology of trapping cold antiprotons and positrons, an essential step towards the present discovery."

The ATHENA experiment, which is run by a collaboration of 39 scientists from 9 different institutions worldwide, saw its first clear signals for antihydrogen in August - appropriately, the 100th anniversary of the birth of theorist Paul Dirac who predicted the existence of antimatter in the late 1920s. Says ATHENA spokesman, Rolf Landua,"The experiment is a major milestone in antimatter science and an important first step on the road to high precision comparisons of hydrogen and antihydrogen. Such measurements will provide information vital to our understanding of the Universe and in particular why nature has a preference for matter over antimatter."


The method ATHENA uses overcomes the two main limitations of previous experiments both at CERN and at Fermilab in the US, which produced only a few anti-atoms per day with velocities close to the speed of light. First, the AD takes high energy antiprotons and slows them down to the leisurely pace - by CERN’s standards - of a tenth of the speed of light. ATHENA then traps the antiprotons in a "cage" created by electromagnetic fields, and reduces their velocity further to a few millionths of the speed of light. The ATHENA apparatus captures and slows down - or "cools" - about 10,000 antiprotons from each bunch that arrives from the AD. The next stage is to mix them with about 75 million cold positrons. These are collected from the decay of a radioactive isotope, then caught within a second trap, and finally transferred to a third, "mixing" trap. It is here that cold - that is, very slow - antihydrogen atoms may form.

Central to ATHENA’s observations is the antihydrogen annihilation detector, which surrounds the trap where the antiprotons and positrons are mixed. When a positron and an antiproton bind together to form a neutral antihydrogen atom, it escapes the trapping electromagnetic fields, which are set up by metal electrodes. The anti-atom then strikes one of the electrodes, and the positron and antiproton annihilate separately, with an electron and a proton, respectively, in the surface of the metal.

The detector provides unambiguous evidence for antihydrogen by detecting the simultaneous annihilations of the antiproton and the positron, which occur at the same time and at the same position. ATHENA finds that several anti-atoms per second are produced on average during the procedure that mixes the positrons and antiprotons. So far the experiment has produced about 50,000 antihydrogen atoms.

ATHENA is one of two experiments set up to search for cold antihydrogen at the AD. Last year the ATRAP experiment was the first to use cold positrons to cool antiprotons. The experiment also successfully confined both ingredients of cold antihydrogen in the same trap structure. This simultaneous trapping of positrons and antiprotons was first demonstrated by TRAP, the predecessor to ATRAP, which operated on the Low Energy Antiproton Ring (LEAR) at CERN.

These breakthroughs at CERN are important milestones on the way to trapping, accumulating and cooling antihydrogen. Cold antihydrogen will be a new tool for precision studies in a broad range of science. Most fundamental will be the comparison of the interaction of hydrogen and antihydrogen with electromagnetic and gravitational fields. Any difference between matter and antimatter, however small, would have profound consequences for our fundamental understanding of Nature and the Universe.

Christine Sutton | alfa
Further information:
http://info.web.cern.ch/info/Press/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>