Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thousands of cold anti-atoms produced at CERN

19.09.2002


An international team of physicists working at the Antiproton Decelerator (AD) facility at CERN has announced the first controlled production of large numbers of antihydrogen atoms at low energies. After mixing cold clouds of trapped positrons and antiprotons - the antiparticles of the familiar electron and proton - under closely monitored conditions, the ATHENA collaboration has identified antihydrogen atoms, formed when positrons bind together with antiprotons. The results are published online today by the journal Nature.



Says Professor Luciano Maiani, Director General of CERN, "The controlled production of antihydrogen observed in ATHENA is a great technological and scientific event. Even more so because ATHENA has produced antihydrogen in unexpectedly abundant quantities. I’d like also to recognise the contribution of the ATRAP experiment at CERN, which has pioneered the technology of trapping cold antiprotons and positrons, an essential step towards the present discovery."

The ATHENA experiment, which is run by a collaboration of 39 scientists from 9 different institutions worldwide, saw its first clear signals for antihydrogen in August - appropriately, the 100th anniversary of the birth of theorist Paul Dirac who predicted the existence of antimatter in the late 1920s. Says ATHENA spokesman, Rolf Landua,"The experiment is a major milestone in antimatter science and an important first step on the road to high precision comparisons of hydrogen and antihydrogen. Such measurements will provide information vital to our understanding of the Universe and in particular why nature has a preference for matter over antimatter."


The method ATHENA uses overcomes the two main limitations of previous experiments both at CERN and at Fermilab in the US, which produced only a few anti-atoms per day with velocities close to the speed of light. First, the AD takes high energy antiprotons and slows them down to the leisurely pace - by CERN’s standards - of a tenth of the speed of light. ATHENA then traps the antiprotons in a "cage" created by electromagnetic fields, and reduces their velocity further to a few millionths of the speed of light. The ATHENA apparatus captures and slows down - or "cools" - about 10,000 antiprotons from each bunch that arrives from the AD. The next stage is to mix them with about 75 million cold positrons. These are collected from the decay of a radioactive isotope, then caught within a second trap, and finally transferred to a third, "mixing" trap. It is here that cold - that is, very slow - antihydrogen atoms may form.

Central to ATHENA’s observations is the antihydrogen annihilation detector, which surrounds the trap where the antiprotons and positrons are mixed. When a positron and an antiproton bind together to form a neutral antihydrogen atom, it escapes the trapping electromagnetic fields, which are set up by metal electrodes. The anti-atom then strikes one of the electrodes, and the positron and antiproton annihilate separately, with an electron and a proton, respectively, in the surface of the metal.

The detector provides unambiguous evidence for antihydrogen by detecting the simultaneous annihilations of the antiproton and the positron, which occur at the same time and at the same position. ATHENA finds that several anti-atoms per second are produced on average during the procedure that mixes the positrons and antiprotons. So far the experiment has produced about 50,000 antihydrogen atoms.

ATHENA is one of two experiments set up to search for cold antihydrogen at the AD. Last year the ATRAP experiment was the first to use cold positrons to cool antiprotons. The experiment also successfully confined both ingredients of cold antihydrogen in the same trap structure. This simultaneous trapping of positrons and antiprotons was first demonstrated by TRAP, the predecessor to ATRAP, which operated on the Low Energy Antiproton Ring (LEAR) at CERN.

These breakthroughs at CERN are important milestones on the way to trapping, accumulating and cooling antihydrogen. Cold antihydrogen will be a new tool for precision studies in a broad range of science. Most fundamental will be the comparison of the interaction of hydrogen and antihydrogen with electromagnetic and gravitational fields. Any difference between matter and antimatter, however small, would have profound consequences for our fundamental understanding of Nature and the Universe.

Christine Sutton | alfa
Further information:
http://info.web.cern.ch/info/Press/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>