Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab’s Hall C experiment delves into nature’s blueprints

13.08.2002


Taking a closer look at matter’s blueprints with a study of the spin-structure functions of the proton and the neutron, collectively known as nucleons



Building a bridge over land or water requires careful engineering. There is the weight of passing cars and trucks to consider. Will high winds or turbulent weather threaten the structure? How deep should the concrete foundations be poured? How best to affix the steel supports? What is the ideal mix of materials for strength, durability and corrosion resistance?

Nature has long ago figured out how best to arrange atoms that comprise ordinary matter. The nuclei inside those atoms are systems of quarks, the particles thought by many to be matter’s basic building blocks. Humans are only now beginning to unravel the engineering secrets of quarks, how they are precisely arranged and how their interactions determine the properties of the atomic nucleus.


In Hall C, in an experiment that began on January 21 and concluded on March 3, researchers took a closer look at matter’s blueprints with a study of the spin-structure functions of the proton and the neutron, collectively known as nucleons. Nucleons are the smallest "everyday" objects made of quarks. Spin is a mathematical property analogous to the way objects physically spin in space, contributing to and affecting the subatomic properties within an atom’s nucleus. Although seemingly limited to the realm of the infinitesimal, scaled up macroscopically those properties eventually affect all things of "normal" size.

"In the big picture, we’d like a better understanding of how quarks are bound up in nucleons," says Mark Jones, a Hall C staff scientist and co-spokesperson for the experiment. "Quarks are not free-floating particles. Because they’re in the nucleus, the nucleus becomes a much more complex object. We’re interested in the details of that complexity."

The Hall C experiment was sensitive to the kind and degree of spin, with a powerful detector that is able, like a kind of electron microscope, to "see" into regions otherwise hidden from view. The CEBAF beam of electrons "illuminated" the nuclear material of their target, and investigators measured the number of electrons that scattered into the detector. With these data, researchers hope to discern the distribution of the quark’s spin inside the nucleons.

The genesis of the experiment was in studies at the Stanford Linear Accelerator, or SLAC and at CERN, in Geneva, which probed the quarks under conditions in which large amounts of kinetic energy are exchanged. In these "deep inelastic scattering" conditions the movement of quarks is not completely understood. The Hall C experiment was proposed in 1996 by co-spokesperson Oscar Rondon, a University of Virginia scientist, to extend the range of those measurements including all possible combinations of spin orientations for protons and neutrons. Related experiments in Halls A and B have explored complementary aspects.

The study required a specialized target that was polarized. Polarization refers to the alignment of spin of protons and neutrons within the target material: in this case, small chunks of solid ammonia that were kept near absolute zero, at one Kelvin, or minus 458 degrees Fahrenheit. A strong magnetic field created the desired polarization. A University of Virginia team developed and prepared the experiment’s target.

"We can get a highly polarized beam," Jones says. "The Lab has spent a lot of time developing such a beam and has the expertise to maintain it. But as the target gets irradiated it loses polarization. Periodically, we had to stop the beam, remove the radiation damage by annealing, and then repolarize the target." In the experiment’s aftermath, during data analysis, researchers are also having to adjust for the subatomic structure of nitrogen, a chemical constituent of the ammonia target, which affects the data taken.

Jones reports that the experiment went well, and that investigators obtained the amount and quality of data they expected. The study, he believes, will make a unique contribution to determining structure functions, with credit going to the Lab’s accelerator for its unique capabilities.

"We’ve made measurements of spin in [certain directions] that can’t be done elsewhere, at least easily," Jones says. "While it’s too early to tell the results, we have seen preliminary indications that the data we took was pretty good. Our error bars are reason-able. I think we’ll be able to extract useful information."

The spin-structure experiment involved a 50-member team of inter-national researchers from the United States, Switzerland, Armenia and Israel. Results should be published within the coming year

Linda Ware | EurekAlert!
Further information:
http://www.jlab.org/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>