Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First images of solar system's invisible frontier

04.07.2008
Twin STEREO spacecraft take first images of distant solar system with particles, not light

NASA's sun-focused STEREO spacecraft unexpectedly detected particles from the edge of the solar system last year, allowing University of California, Berkeley, scientists to map for the first time the energized particles in the region where the hot solar wind slams into the cold interstellar medium.

Mapping the region by means of neutral, or uncharged, atoms instead of light "heralds a new kind of astronomy using neutral atoms," said Robert Lin, UC Berkeley professor of physics and lead for the suprathermal electron sensor aboard STEREO. "You can't get a global picture of this region, one of the last unexplored regions of the heliosphere, any other way because it is too tenuous to be seen by normal optical telescopes."

The heliosphere is a volume over which the effects of the solar wind extend, stretching from the sun to more than twice the distance of Pluto. Beyond its edge, called the heliopause, lies the relative quiet of interstellar space, at about 100 astronomical units (AU) - 100 times the Earth-sun distance.

The results, reported in the July 3 issue of the journal Nature, clear up a discrepancy in the amount of energy dumped into space by the decelerating solar wind that was discovered last year when Voyager 2 crossed the solar system's termination shock and entered the surrounding heliosheath. The termination shock is the region of the heliosphere where the supersonic solar wind slows to subsonic speed as it merges with the interstellar medium. The heliosheath is the region of roiled plasma between the shock front and the interstellar medium.

The newly discovered population of ions in the heliosheath contains about 70 percent of the energy dissipated in the termination shock, exactly the amount unaccounted for by Voyager 2's instruments, the UC Berkeley physicists concluded. The Voyager 2 results are reported in the same issue of Nature.

The twin STEREO spacecraft were launched in 2006 into Earth's orbit about the sun to obtain stereo pictures of the sun's surface and to measure magnetic fields and ion fluxes associated with solar explosions.

Between June and October 2007, however, the suprathermal electron sensor in the IMPACT (In-situ Measurements of Particles and CME Transients) suite of instruments on board each STEREO spacecraft detected neutral atoms originating from the same spot in the sky: the shock front and the heliosheath beyond, where the sun plunges through the interstellar medium.

"The suprathermal electron sensors were designed to detect charged electrons, which fluctuate in intensity depending on the magnetic field," said lead author Linghua Wang, a graduate student in UC Berkeley's Department of Physics. "We were surprised that these particle intensities didn't depend on the magnetic field, which meant they must be neutral atoms."

UC Berkeley physicists concluded that these energetic neutral atoms were originally ions heated up in the termination that lost their charge to cold atoms in the interstellar medium and, no longer hindered by magnetic fields, flowed back toward the sun and into the suprathermal electron sensors on STEREO.

"This is the first mapping of energetic neutral particles from beyond the heliosphere," Lin said. "These neutral atoms tell us about the hot ions in the heliosheath. The ions heated in the termination shock exchange charge with the cold, neutral atoms in the interstellar medium to become neutral, and then flow back in."

According to Lin, the neutral atoms are probably hydrogen, since most of the particles in the local interstellar medium are hydrogen.

The charge exchange between hot ions and neutral atoms to generate energetic neutral atoms is well known around the sun and planets, including Earth and Jupiter, and has been used by spacecraft such as IMAGE and Cassini as a means of remotely measuring the energy in ion plasmas, since neutral atoms travel much farther than ions. A new NASA mission, the Interstellar Boundary Explorer (IBEX), is planned for launch later this year to map more thoroughly the lower-energy energetic ions in the heliosheath by means of energetic neutral atoms to discover the structure of the termination shock and how hydrogen ions are accelerated there.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>