Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hard X-ray Nanoprobe Provides New Capability to Study Nanoscale Materials

26.06.2008
The Center for Nanoscale Materials’ (CNM) newly operational Hard X-ray Nanoprobe at the U.S. Department of Energy's (DOE) Argonne National Laboratory is one of the world's most powerful x-ray microscopes.

It has been designed to study novel nanoscale materials and devices aimed at, for example, harvesting solar energy more efficiently, providing more efficient lighting, or enabling next-generation computing.

The weak interaction of hard x-rays with matter allows researchers to penetrate into materials, look through process gases and study sub-surface phenomena. At the same time, this property also has made fabrication of efficient x-ray optics difficult, limiting the degree to which hard x-rays can be focused.

Using advanced x-ray optics called Fresnel zone plates -- similar in appearance to the large Fresnel lenses used to reflect light in lighthouses – along with a laser-based nanopositioning system, Argonne is able to focus x-rays to the smallest spot yet achieved with this type of illumination source. The microscope combines scanning-probe and full-field transmission imaging to create both three-dimensional visualizations of complex systems and devices as well as to perform sensitive quantitative analysis of elemental composition, chemical states, crystallographic phase and strain.

"It's the highest resolution microscope of its type in the world right now," acting CNM Division Director Stephen Streiffer said. "The Nanoprobe is one of the tools that make the CNM unique."

The Nanoprobe uses x-rays with photon energies between 3-30 kiloelectron volts to produce images with initially 30 nanometer resolution – roughly the size of 100 atoms. As x-ray optics continue to improve and novel x-ray optics are developed, it is anticipated that significantly higher spatial resolution will be reached over the lifetime of the Nanoprobe.

The Hard X-ray Nanoprobe was designed, constructed and is operated in partnership between the CNM and the X-Ray Science Division of the Advanced Photon Source (APS) at Argonne National Laboratory. The CNM pursues the development and characterization of novel nanoscale materials and devices. The capabilities of Argonne's Advanced Photon Source play a key role in that their hard X-rays, utilized by the Nanoprobe beamline, provide unprecedented capabilities to characterize very small structures.

“The instrument allows characterization of nanoscale materials and devices in previously unavailable detail, and is particularly well suited for the study of buried structures, in real world environments and for dynamics." Nanoprobe Beamline Director Jörg Maser said.

The Nanoprobe became operational in October of 2007 and is open to all science users based on peer review under the user programs of the APS and the CNM. The CNM is a national user facility, providing tools and expertise for nanoscience and nanotechnology research. Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The mission of the Basic Energy Sciences (BES) program - a multipurpose, scientific research effort - is to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use.

Argonne National Laboratory brings the world’s brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for U.S. Department of Energy's Office of Science.

Brock Cooper | newswise
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>