Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientist Models Molecular Switch

Michigan Technological University physicist Ranjit Pati and his team have developed a model to explain the mechanism behind computing’s elusive Holy Grail, the single molecular switch.

If borne out experimentally, his work could help explode Moore’s Law and could revolutionize computing technology.

Moore’s Law predicts that the number of transistors that can be economically placed on an integrated circuit will double about every two years. But by 2020, Moore’s Law is expected to hit a brick wall, as manufacturing costs rise and transistors shrink beyond the reach of the laws of classical physics.

A solution lies in the fabled molecular switch. If molecules could replace the current generation of transistors, you could fit more than a trillion switches onto a centimeter-square chip. In 1999, a team of researchers at Yale University published a description of the first such switch, but scientists have been unable to replicate their discovery or explain how it worked. Now, Pati believes he and his team may have found the mechanism behind the switch.

Applying quantum physics, he and his group developed a computer model of an organometallic molecule firmly bound between two gold electrodes. Then he turned on the juice.

As the laws of physics would suggest, the current increased along with the voltage, until it rose to a miniscule 142 microamps. Then suddenly, and counterintuitively, it dropped, a mysterious phenomenon known as negative differential resistance, or NDR. Pati was astonished at what his analysis of the NDR revealed.

Up until the 142-microamp tipping point, the molecule’s cloud of electrons had been whizzing about the nucleus in equilibrium, like planets orbiting the sun. But under the bombardment of the higher voltage, that steady state fell apart, and the electrons were forced into a different equilibrium, a process known as “quantum phase transition.”

“I never thought this would happen,” Pati said. “I was really excited to see this beautiful result.”

Why is this important? A molecule that can exhibit two different phases when subjected to electric fields has promise as a switch: one phase is the “zero” and the other the “one,” which form the foundation of digital electronics.

Pati is working with other scientists to test the model experimentally. His results appear in the article “Origin of Negative Differential Resistance in a Strongly Coupled Single Molecule-metal Junction Device,” published June 16 in Physical Review Letters. The other coauthors are Mike McClain, an undergraduate from Michigan Tech; and Anirban Bandyopadhyay, of the National Institute for Materials Science, Japan. The work of Pati’s team was financed by a five-year, $400,000 Faculty Early Career Development Program award he received from the National Science Foundation.

Marcia Goodrich | newswise
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>