Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Developed to Weigh, Resolve Distant Black Holes

04.06.2008
Arkansas Professor presents new, simple method to learn about black holes up to eight billion light years away.

Research presented to the American Astronomical Society meeting in St. Louis today offers astronomers a new, simple method to learn about black holes up to eight billion light years away – thousands of times farther away than black holes can be measured today.

Dr. Marc Seigar, assistant professor of physics and astronomy in the College of Science and Math at the University of Arkansas at Little Rock, and his research team have concluded that the larger the black hole at the center of a spiral galaxy, the tighter the galaxy’s arms wrap around itself. If correct, the simple relationship would give researchers an easy way to learn about black holes.

“This is a really easy way to determine the masses of these super-massive black holes at the centers of galaxies that are very far away,” Seigar said. “This gives us a way to measure the size of these far away black holes.”

Since super-massive black holes were discovered in nearby galaxies, researchers have been determining their masses by looking at how fast the stars were moving in the very central regions of those galaxies. But that method only works for relatively nearby galaxies, Seigar said.

“For more distant galaxies out to the distances we’re talking about, you have to develop alternative methods,” Seigar said. “And we have developed such a method.”

The method he described to the Astronomical Society involves taking a snapshot of a distant galaxy and measuring how tightly the spiral arms wrap around the galaxy, or the wrapping angle. He determined that the more massive the black hole, the tighter the spiral arms wrap around the galaxy, which indicates a small wrapping angle.

Seigar’s team studied photographs of 27 spiral galaxies, including our galaxy, the Milky Way, and its nearest neighbor, the Andromeda Galaxy. Galaxies with the smallest black holes had spiral arms with wrapping angles of up to 43 degrees. Those with biggest black holes had spiral arms at angles of only seven degrees between their central bulges.

“One of the important reasons to learn about the every distant black holes is, when you are looking at galaxies very far away, you are looking at them as they were in the past, so you can learn about how masses of black holes grow over time, ” Seigar said.

The black holes he is studying are super-massive black holes that are millions or billions times more massive than our sun. Since they seem to be found at the centers of all galaxies, they could be a key element of how galaxies form in the first place.

His studies also indicate that the mass of a black hole may depend on how centrally concentrated the dark matter is in a galaxy. “But that is a hypothesis that has yet to be proven,” he said. “We’re going to work on that.”

Seigar joined UALR’s faculty in 2007 following a stint as an assistant project scientist and McCue Fellow at the University of California-Irvine. His other experience includes postdoctoral research associate at the University of California-Irvine, adjunct professor at the University of Hawaii-Hilo, postdoctoral research associate at the University of London’s Imperial College and at Ghent University in Belgium. He also was a visiting astronomer at the Space Telescope Science Institute.

Seigar, who earned a Ph.D. in astrophysics at John Moores University in Liverpool, teaches Introduction to Astronomy at UALR as well as performing research in the structure, dynamics and star formation in spiral galaxies, and the nature of intracluster light in clusters of galaxies.

“Since my thesis I have been interested in the overall structure, morphology and dynamics of nearby galaxies, especially disk galaxies,” Seigar said.

He is involved in the Carnegie-Irvine Nearby Galaxies Survey (CINGS), a comprehensive optical and infrared imaging survey of the 600 brightest galaxies in the southern-hemisphere sky, being carried out at the 2.5-meter Du Pont telescope at Las Campanas Observatory. He is also involved in the Arkansas Galaxy Evolution Survey (AGES), part of which is to conduct a census of super-massive black holes in the universe.

To see photographs demonstrating Seigar’s paper can be found at http://www.ualr.edu/mxseigar/pics/Andromeda.jpg and http://www.ualr.edu/mxseigar/pics/Triangulum.jpg

Joan I. Duffy | newswise
Further information:
http://www.ualr.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>