Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Method Developed to Weigh, Resolve Distant Black Holes

Arkansas Professor presents new, simple method to learn about black holes up to eight billion light years away.

Research presented to the American Astronomical Society meeting in St. Louis today offers astronomers a new, simple method to learn about black holes up to eight billion light years away – thousands of times farther away than black holes can be measured today.

Dr. Marc Seigar, assistant professor of physics and astronomy in the College of Science and Math at the University of Arkansas at Little Rock, and his research team have concluded that the larger the black hole at the center of a spiral galaxy, the tighter the galaxy’s arms wrap around itself. If correct, the simple relationship would give researchers an easy way to learn about black holes.

“This is a really easy way to determine the masses of these super-massive black holes at the centers of galaxies that are very far away,” Seigar said. “This gives us a way to measure the size of these far away black holes.”

Since super-massive black holes were discovered in nearby galaxies, researchers have been determining their masses by looking at how fast the stars were moving in the very central regions of those galaxies. But that method only works for relatively nearby galaxies, Seigar said.

“For more distant galaxies out to the distances we’re talking about, you have to develop alternative methods,” Seigar said. “And we have developed such a method.”

The method he described to the Astronomical Society involves taking a snapshot of a distant galaxy and measuring how tightly the spiral arms wrap around the galaxy, or the wrapping angle. He determined that the more massive the black hole, the tighter the spiral arms wrap around the galaxy, which indicates a small wrapping angle.

Seigar’s team studied photographs of 27 spiral galaxies, including our galaxy, the Milky Way, and its nearest neighbor, the Andromeda Galaxy. Galaxies with the smallest black holes had spiral arms with wrapping angles of up to 43 degrees. Those with biggest black holes had spiral arms at angles of only seven degrees between their central bulges.

“One of the important reasons to learn about the every distant black holes is, when you are looking at galaxies very far away, you are looking at them as they were in the past, so you can learn about how masses of black holes grow over time, ” Seigar said.

The black holes he is studying are super-massive black holes that are millions or billions times more massive than our sun. Since they seem to be found at the centers of all galaxies, they could be a key element of how galaxies form in the first place.

His studies also indicate that the mass of a black hole may depend on how centrally concentrated the dark matter is in a galaxy. “But that is a hypothesis that has yet to be proven,” he said. “We’re going to work on that.”

Seigar joined UALR’s faculty in 2007 following a stint as an assistant project scientist and McCue Fellow at the University of California-Irvine. His other experience includes postdoctoral research associate at the University of California-Irvine, adjunct professor at the University of Hawaii-Hilo, postdoctoral research associate at the University of London’s Imperial College and at Ghent University in Belgium. He also was a visiting astronomer at the Space Telescope Science Institute.

Seigar, who earned a Ph.D. in astrophysics at John Moores University in Liverpool, teaches Introduction to Astronomy at UALR as well as performing research in the structure, dynamics and star formation in spiral galaxies, and the nature of intracluster light in clusters of galaxies.

“Since my thesis I have been interested in the overall structure, morphology and dynamics of nearby galaxies, especially disk galaxies,” Seigar said.

He is involved in the Carnegie-Irvine Nearby Galaxies Survey (CINGS), a comprehensive optical and infrared imaging survey of the 600 brightest galaxies in the southern-hemisphere sky, being carried out at the 2.5-meter Du Pont telescope at Las Campanas Observatory. He is also involved in the Arkansas Galaxy Evolution Survey (AGES), part of which is to conduct a census of super-massive black holes in the universe.

To see photographs demonstrating Seigar’s paper can be found at and

Joan I. Duffy | newswise
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>