Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting warmer: UT Knoxville researchers uncover information on new superconductors

30.05.2008
The world of physics is on fire about a new kind of superconductor, and a group of researchers at the University of Tennessee, Knoxville, and Oak Ridge National Laboratory led by physicist Pengcheng Dai are in the middle of the heat.

The excitement centers around a new class of high-temperature superconductors -- initially discovered in February and March by Japanese and Chinese researchers -- and the effort to learn more about them. Dai and his team published major new findings about the materials in this week's online edition of the leading scientific journal Nature.

For more than 20 years, scientists have struggled to understand the phenomenon of high-temperature superconductors. The materials move electricity with incredible efficiency -- something that, if fully understood and controlled, could have a major impact on energy use around the world. Their impact could be felt in a variety of ways, from how we transmit electricity into homes to how we power the massive machines used in industry.

Conventional superconductors only possess the property at incredibly cold temperatures -- far too cold for widespread practical use, which is what drives the search for materials that are superconductors at higher temperatures.

When research showed that the new materials could be superconductors at higher temperatures than any conventional superconductors recorded -- 43 Kelvin -- Dai shifted his research group into high gear, contacting colleagues in China to send samples to him.

"When I saw [the superconducting temperature] hit 43K," said Dai, a UT Knoxville-ORNL joint faculty member, "I called and said, 'Send them over.' The sample arrived at UT that Friday. Clarina [de la Cruz, the study's lead author] went to Maryland that night, and ORNL the next week."

De la Cruz, the study's lead author and a postdoctoral researcher in Dai's lab and ORNL, was at the campus of the National Institute of Standards and Technology (NIST) in less than 12 hours, using an instrument that bombards the material with neutrons to learn more about its characteristics. Part of the research also was conducted at ORNL's High Flux Isotope Reactor a few days later.

What de la Cruz and Dai found was that the new materials share a common trait with another class of high-temperature superconductors -- when the materials are doped to become superconducting, they lose their static magnetism.

It's a trait that that Dai and his team have studied extensively in superconductors known as cuprates, and this finding is a step toward showing that there may be a broader significance to the tie between magnetism and superconductivity.

"In our view, it is extremely important to find another example," Dai said. "It is not exactly the same as the cuprates, but it is similar."

The speed with which their research was conducted reflects the competitive nature of superconductivity research, a field which already has led to two Nobel Prizes.

Dai and his research team will continue to analyze the new material, in hopes of finding the common threads that make materials superconductive.

"The hope, the dream of the research is to engineer the process to happen at higher and higher temperatures," he said. The end goal is to be able to harness the unique property at temperatures that do not require incredibly cold and incredibly controlled situations.

Jay Mayfield | EurekAlert!
Further information:
http://www.tennessee.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>