Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting warmer: UT Knoxville researchers uncover information on new superconductors

30.05.2008
The world of physics is on fire about a new kind of superconductor, and a group of researchers at the University of Tennessee, Knoxville, and Oak Ridge National Laboratory led by physicist Pengcheng Dai are in the middle of the heat.

The excitement centers around a new class of high-temperature superconductors -- initially discovered in February and March by Japanese and Chinese researchers -- and the effort to learn more about them. Dai and his team published major new findings about the materials in this week's online edition of the leading scientific journal Nature.

For more than 20 years, scientists have struggled to understand the phenomenon of high-temperature superconductors. The materials move electricity with incredible efficiency -- something that, if fully understood and controlled, could have a major impact on energy use around the world. Their impact could be felt in a variety of ways, from how we transmit electricity into homes to how we power the massive machines used in industry.

Conventional superconductors only possess the property at incredibly cold temperatures -- far too cold for widespread practical use, which is what drives the search for materials that are superconductors at higher temperatures.

When research showed that the new materials could be superconductors at higher temperatures than any conventional superconductors recorded -- 43 Kelvin -- Dai shifted his research group into high gear, contacting colleagues in China to send samples to him.

"When I saw [the superconducting temperature] hit 43K," said Dai, a UT Knoxville-ORNL joint faculty member, "I called and said, 'Send them over.' The sample arrived at UT that Friday. Clarina [de la Cruz, the study's lead author] went to Maryland that night, and ORNL the next week."

De la Cruz, the study's lead author and a postdoctoral researcher in Dai's lab and ORNL, was at the campus of the National Institute of Standards and Technology (NIST) in less than 12 hours, using an instrument that bombards the material with neutrons to learn more about its characteristics. Part of the research also was conducted at ORNL's High Flux Isotope Reactor a few days later.

What de la Cruz and Dai found was that the new materials share a common trait with another class of high-temperature superconductors -- when the materials are doped to become superconducting, they lose their static magnetism.

It's a trait that that Dai and his team have studied extensively in superconductors known as cuprates, and this finding is a step toward showing that there may be a broader significance to the tie between magnetism and superconductivity.

"In our view, it is extremely important to find another example," Dai said. "It is not exactly the same as the cuprates, but it is similar."

The speed with which their research was conducted reflects the competitive nature of superconductivity research, a field which already has led to two Nobel Prizes.

Dai and his research team will continue to analyze the new material, in hopes of finding the common threads that make materials superconductive.

"The hope, the dream of the research is to engineer the process to happen at higher and higher temperatures," he said. The end goal is to be able to harness the unique property at temperatures that do not require incredibly cold and incredibly controlled situations.

Jay Mayfield | EurekAlert!
Further information:
http://www.tennessee.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>