Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting warmer: UT Knoxville researchers uncover information on new superconductors

30.05.2008
The world of physics is on fire about a new kind of superconductor, and a group of researchers at the University of Tennessee, Knoxville, and Oak Ridge National Laboratory led by physicist Pengcheng Dai are in the middle of the heat.

The excitement centers around a new class of high-temperature superconductors -- initially discovered in February and March by Japanese and Chinese researchers -- and the effort to learn more about them. Dai and his team published major new findings about the materials in this week's online edition of the leading scientific journal Nature.

For more than 20 years, scientists have struggled to understand the phenomenon of high-temperature superconductors. The materials move electricity with incredible efficiency -- something that, if fully understood and controlled, could have a major impact on energy use around the world. Their impact could be felt in a variety of ways, from how we transmit electricity into homes to how we power the massive machines used in industry.

Conventional superconductors only possess the property at incredibly cold temperatures -- far too cold for widespread practical use, which is what drives the search for materials that are superconductors at higher temperatures.

When research showed that the new materials could be superconductors at higher temperatures than any conventional superconductors recorded -- 43 Kelvin -- Dai shifted his research group into high gear, contacting colleagues in China to send samples to him.

"When I saw [the superconducting temperature] hit 43K," said Dai, a UT Knoxville-ORNL joint faculty member, "I called and said, 'Send them over.' The sample arrived at UT that Friday. Clarina [de la Cruz, the study's lead author] went to Maryland that night, and ORNL the next week."

De la Cruz, the study's lead author and a postdoctoral researcher in Dai's lab and ORNL, was at the campus of the National Institute of Standards and Technology (NIST) in less than 12 hours, using an instrument that bombards the material with neutrons to learn more about its characteristics. Part of the research also was conducted at ORNL's High Flux Isotope Reactor a few days later.

What de la Cruz and Dai found was that the new materials share a common trait with another class of high-temperature superconductors -- when the materials are doped to become superconducting, they lose their static magnetism.

It's a trait that that Dai and his team have studied extensively in superconductors known as cuprates, and this finding is a step toward showing that there may be a broader significance to the tie between magnetism and superconductivity.

"In our view, it is extremely important to find another example," Dai said. "It is not exactly the same as the cuprates, but it is similar."

The speed with which their research was conducted reflects the competitive nature of superconductivity research, a field which already has led to two Nobel Prizes.

Dai and his research team will continue to analyze the new material, in hopes of finding the common threads that make materials superconductive.

"The hope, the dream of the research is to engineer the process to happen at higher and higher temperatures," he said. The end goal is to be able to harness the unique property at temperatures that do not require incredibly cold and incredibly controlled situations.

Jay Mayfield | EurekAlert!
Further information:
http://www.tennessee.edu

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>