Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser light produces complex nanostructures

28.05.2008
Researchers at Chalmers University of Technology in Sweden have reported that a single laser pulse can create complex, ordered nanostructure systems.

This previously unobserved phenomenon has just beeen described in an article in the scientific journal Nature Photonics.

- We have discovered a method for controlling the pattern into which the nanoparticles organize themselves, says physicist Dinko Chakarov, one of the authors of the article.

The complex nanostructures that are created may find applications in fibre optics, optical sensors and advanced light emitting diodes and lasers.

The researchers started with a layer of disordered nanoparticles of gold or silver on a membrane of nanometre thickness. The patterning is a consequence of several transformations of the light, which finally results in partial melting and moving of the nanoparticles.

First, the light is caught by the particles, resulting in resonant swinging back and forth of the particle electrons (so called localized plasmon resonances). This specific excitation gives rise to scattering and coupling of electromagnetic energy into trapped, waveguided modes of the thin membrane. The edges of the membrane cause a standing wave pattern to be formed.

The end result is hot and cold zones of a specific periodicity on the membrane surface, and if the laser light energy is high enough, the field energy in the hot zones is high enough to melt and move the gold particles. All of this occurs within a few nanoseconds or even faster, and the resulting patterns have dimensions that can be both smaller and larger than the laser wavelength.

The results demonstrate that complex nanostructured systems can be fabricated and manipulated by a single laser pulse. In addition, the study shows in a very concrete manner that assemblies of optically active nanoparticles can be used to trap light in a waveguide (membrane or fibre) with nanometer dimensions.

The researchers have shown that the pattern can be controlled by varying several parameters: the laser light angle, wavelength and polarization, as well as the membrane thickness and the type of particles on the membrane.

The discovery contributes to the understanding of the fundamental interaction between light and matter. The study also shows how plasmon resonance can be used to enhance light absorption, which may be of use for the production of better solar cells, see previous article: "Energetic nanoparticles swing sunlight into electricity"

Further information:
Dinko Chakarov, Department of Applied Physics, Chalmers University of Technology
Tel:+46 (0)31 772 3375
dinko.chakarov@fy.chalmers.se
Pressofficer Sofie Hebrand, +46 736-79 35 90; sofie.hebrand@chalmers.se

Sofie Hebrand | idw
Further information:
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=67239
http://www.nature.com/nphoton/journal/vaop/ncurrent/abs/nphoton.2008.80.html

More articles from Physics and Astronomy:

nachricht A quantum spin liquid
24.10.2017 | Boston College

nachricht Single nanoparticle mapping paves the way for better nanotechnology
24.10.2017 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>