Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Way to Predict Properties of Light Nuclei

23.05.2008
Scientists have spent 70 years trying to predict the properties of nuclei, but have had to settle for approximate models because computational techniques were not equal to the task.

In the 1990s, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory and elsewhere succeeded in breaking through the computational barrier to provide accurate predictions of light nuclei based on how individual neutrons and protons interact with each other. Now they are learning to compute what happens when nuclei collide.

"We have new tools that should allow us to compute nuclear reaction rates that determine how the stars work and how the nuclei around us are made in the universe," physicist Ken Nollett said.

Predicting nuclear properties requires elaborate calculations in light elements such as helium, but it becomes increasingly complicated in heavier elements. Using advanced mathematical models and sophisticated computers, Argonne scientists have been able to predict the properties of elements up to carbon 12.

Extending these calculations to include colliding nuclei will help to understand the origins of the elements and the insides of stars, where such collisions occur. Studies of stars and element production rely on collision properties provided by complicated experiments. Nollett’s calculations will supplement these experiments, maybe even making some of them unnecessary.

"Astrophysics depends on these difficult experiments," Nollett said. "Our calculations should provide another way to get that information."

Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.

The mission of the Nuclear Physics (NP) program is to foster fundamental research in nuclear physics that will provide new insights and advance our knowledge on the nature of matter and energy and develop the scientific knowledge, technologies and trained workforce that are needed to underpin the Department of Energy's missions for nuclear-related national security, energy, and environmental quality. The program provides world-class, peer-reviewed research results and operates user accelerator facilities in the scientific disciplines encompassed by the Nuclear Physics mission areas under the mandate provided in Public Law 95-91 that established the Department.

Argonne National Laboratory brings the world’s brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | newswise
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

nachricht Filling the early universe with knots can explain why the world is three-dimensional
17.10.2017 | Vanderbilt University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>