Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers search for orphan stars using newly upgraded telescope

21.05.2008
New camera sees first light

Using new charge coupled device (CCD) instrumentation, Case Western Reserve University astronomers can now view the night sky wider and deeper than before.

While the vast reaches of intergalactic space may appear dark and empty, a new camera installed on the university's Burrell Schmidt telescope at Kitt Peak National Observatory in Tucson, Ariz., will bring into clear view the faint sea of orphan stars strewn throughout the nearby Virgo cluster of galaxies.

The design and installation of the new camera system was led by Case Western Reserve astronomer Paul Harding, who also serves as the observatory manager. A CCD -- a larger and more sensitive version of the imaging technology found in everyday digital cameras -- will enable the astronomers to determine the ages of these stars and unravel the secrets of their origins.

This faint orphan starlight, dubbed "intracluster light," is formed when galaxies collide with one another inside titanic clusters of galaxies. During these collisions, stars are ripped away from their parent galaxies and strewn throughout the cluster by the gravitational forces at work.

Originally discovered in the Virgo cluster three years ago by Case astronomer Chris Mihos and his collaborators, this intracluster light holds the key to understanding how galaxy clusters form and evolve.

The primary reason for upgrading the telescope's camera is to determine the color of these stars, according to Mihos and Harding. "Typically younger stars are bluer," Harding says, "so if we can measure the color of the intracluster light, we can learn about its age."

Younger ages for the stars would suggest that the Virgo cluster formed relatively recently, over the past few billion years. But because the stars are very faint in the blue, to measure the stellar colors the existing camera needed to be upgraded to be image a wider portion of the sky with even greater sensitivity.

The telescope's upgraded camera images an area of the sky 1.5 degrees on a side -- twice as big as the old camera, and enough to fit nine full moons in the field of view. "By imaging twice as much sky, we can collect twice as much light at once," Mihos says, "and that lets us detect this faint starlight even in the blue where it is extremely faint."

Harding likens the new CCD to a camera that has been retrofitted to increase its film size from 35 mm to a large format film size of several inches. "It's the same camera but bigger film," Harding explained. The CCD itself, a thin wafer of silicon measuring three inches on a side, was fabricated by the Imaging Technology Laboratory at the University of Arizona and cost approximately $100,000.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>