Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers search for orphan stars using newly upgraded telescope

New camera sees first light

Using new charge coupled device (CCD) instrumentation, Case Western Reserve University astronomers can now view the night sky wider and deeper than before.

While the vast reaches of intergalactic space may appear dark and empty, a new camera installed on the university's Burrell Schmidt telescope at Kitt Peak National Observatory in Tucson, Ariz., will bring into clear view the faint sea of orphan stars strewn throughout the nearby Virgo cluster of galaxies.

The design and installation of the new camera system was led by Case Western Reserve astronomer Paul Harding, who also serves as the observatory manager. A CCD -- a larger and more sensitive version of the imaging technology found in everyday digital cameras -- will enable the astronomers to determine the ages of these stars and unravel the secrets of their origins.

This faint orphan starlight, dubbed "intracluster light," is formed when galaxies collide with one another inside titanic clusters of galaxies. During these collisions, stars are ripped away from their parent galaxies and strewn throughout the cluster by the gravitational forces at work.

Originally discovered in the Virgo cluster three years ago by Case astronomer Chris Mihos and his collaborators, this intracluster light holds the key to understanding how galaxy clusters form and evolve.

The primary reason for upgrading the telescope's camera is to determine the color of these stars, according to Mihos and Harding. "Typically younger stars are bluer," Harding says, "so if we can measure the color of the intracluster light, we can learn about its age."

Younger ages for the stars would suggest that the Virgo cluster formed relatively recently, over the past few billion years. But because the stars are very faint in the blue, to measure the stellar colors the existing camera needed to be upgraded to be image a wider portion of the sky with even greater sensitivity.

The telescope's upgraded camera images an area of the sky 1.5 degrees on a side -- twice as big as the old camera, and enough to fit nine full moons in the field of view. "By imaging twice as much sky, we can collect twice as much light at once," Mihos says, "and that lets us detect this faint starlight even in the blue where it is extremely faint."

Harding likens the new CCD to a camera that has been retrofitted to increase its film size from 35 mm to a large format film size of several inches. "It's the same camera but bigger film," Harding explained. The CCD itself, a thin wafer of silicon measuring three inches on a side, was fabricated by the Imaging Technology Laboratory at the University of Arizona and cost approximately $100,000.

Susan Griffith | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>