Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-Setting Laser May Aid Searches for Earthlike Planets

06.05.2008
Scientists at the University of Konstanz in Germany and the National Institute of Standards and Technology (NIST) have demonstrated an ultrafast laser that offers a record combination of high speed, short pulses and high average power.

The same NIST group also has shown that this type of laser, when used as a frequency comb—an ultraprecise technique for measuring different colors of light—could boost the sensitivity of astronomical tools searching for other Earthlike planets as much as 100 fold.

The dime-sized laser, to be described Thursday, May 8, at the Conference on Lasers and Electro-Optics,* emits 10 billion pulses per second, each lasting about 40 femtoseconds (quadrillionths of a second), with an average power of 650 milliwatts. For comparison, the new laser produces pulses 10 times more often than a standard NIST frequency comb while producing much shorter pulses than other lasers operating at comparable speeds. The new laser is also 100 to 1000 times more powerful than typical high-speed lasers, producing clearer signals in experiments. The laser was built by Albrecht Bartels at the Center for Applied Photonics of the University of Konstanz.

Among its applications, the new laser can be used in searches for planets orbiting distant stars. Astronomers look for slight variations in the colors of starlight over time as clues to the presence of a planet orbiting the star. The variations are due to the small wobbles induced in the star’s motion as the orbiting planet tugs it back and forth, producing minute shifts in the apparent color (frequency) of the starlight. Currently, astronomers’ instruments are calibrated with frequency standards that are limited in spectral coverage and stability. Frequency combs could be more accurate calibration tools, helping to pinpoint even smaller variations in starlight caused by tiny Earthlike planets. Such small planets would cause color shifts equivalent to a star wobble of just a few centimeters per second. Current instruments can detect, at best, a wobble of about 1 meter per second.

Standard frequency combs have “teeth” that are too finely spaced for astronomical instruments to read. The faster laser is one approach to solving this problem. In a separate paper,** the NIST group and astronomer Steve Osterman at the University of Colorado at Boulder describe how, by bouncing the light between sets of mirrors a particular distance apart, they can eliminate periodic blocks of teeth to create a gap-toothed comb. This leaves only every 10th or 20th tooth, making an ideal ruler for astronomy.

Both approaches have advantages for astronomical planet finding and related applications. The dime-sized laser is very simple in construction and produces powerful and extremely well-defined comb teeth. On the other hand, the filtering approach can cover a broader range of wavelengths. Four or five filtering cavities in parallel would provide a high-precision comb of about 25,000 evenly spaced teeth that spans the visible to near-infrared wavelengths (400 to 1100 nanometers), NIST physicist Scott Diddams says.

Osterman says he is pursuing the possibility of testing such a frequency comb at a ground-based telescope or launching a comb on a satellite or other space mission. Other possible applications of the new laser include remote sensing of gases for medical or atmospheric studies, and on-the-fly precision control of high-speed optical communications to provide greater versatility in data and time transmissions. The application of frequency combs to planet searches is of international interest and involves a number of major institutions such as the Max-Planck Institute for Quantum Optics and Harvard Smithsonian Center for Astrophysics.

Background on frequency combs and NIST’s role in their development can be found at: “Optical Frequency Combs” at http://www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm.

* A. Bartels, D. Heinecke and S.A. Diddams. Passively mode-locked 10 GHz femtosecond Ti:sapphire laser with >1 mW of power per frequency comb mode. Post-deadline paper presented at Conference on Lasers and Electro-Optics (CLEO), San Jose, Calif., May 4-9, 2008.

** D.A. Braje, M. S. Kirchner, S. Osterman, T. Fortier and S. A. Diddams. Astronomical spectrograph calibration with broad-spectrum frequency combs. To appear in European Physics Journal D. (Posted online at arXiv:0803.0565)

Laura Ost | newswise
Further information:
http://www.nist.gov
http://www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>