Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Looking at neurons from all sides

A new technique that marries a fast-moving laser beam with a special microscope that look at tissues in different optical planes will enable scientists to get a three-dimensional view of neurons or nerve cells as they interact, said Baylor College of Medicine scientists in a report that appears today in the journal Nature Neuroscience.

“Most microscopes can only study cell function in two dimensions,” said Dr. Gaddum Duemani Reddy, an M.D./Ph.D. student at BCM at Houston and Rice University and also first author of the study. “To look at different planes, you have move your preparation (of cells) or the objective lens. That takes time, and we are looking at processes that happen in milliseconds.”

To solve that problem, he said, they developed a “trick” to quickly move a laser beam in three dimensions and then adapted that laser beam to the multi-photon microscope they were using. That allowed them to “see” the neuron’s function in three dimensions, giving them a much better view of its activity.

A multiphoton microscope looks much like a conventional, upright microscope but it has an adaption that allows it to look at tissues in sections. A conventional multiphoton microscope does that very slowly, he said.

“With ours, you can do it very quickly. We are starting to see how a single neuron behaves in our laboratory,” he said. The next step, he said, will be to use to it to look a clusters or colonies of neurons. This will enable them to actually see the neuronal interactions.

“At present, the technology is applied in my lab to study information processing of single neurons in brain slice preparations by 3D multi-site optical recording,” said Dr. Peter Saggau, professor of neuroscience at BCM and the paper’s senior author.

He is collaborating with two other labs on using the technology in other ways. In one, he said, researchers plan to use the technology to monitor nerve activity in the brains of lab animals in order study how populations of neurons communicate during visual stimulation. Another study attempts to use the technology to monitor stimulation of the acoustic nerve optically. Those scientists hope to reinstate hearing in lab animals whose inner ear receptors do not work.

Graciela Gutierrez | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>