Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking at neurons from all sides

29.04.2008
A new technique that marries a fast-moving laser beam with a special microscope that look at tissues in different optical planes will enable scientists to get a three-dimensional view of neurons or nerve cells as they interact, said Baylor College of Medicine scientists in a report that appears today in the journal Nature Neuroscience.

“Most microscopes can only study cell function in two dimensions,” said Dr. Gaddum Duemani Reddy, an M.D./Ph.D. student at BCM at Houston and Rice University and also first author of the study. “To look at different planes, you have move your preparation (of cells) or the objective lens. That takes time, and we are looking at processes that happen in milliseconds.”

To solve that problem, he said, they developed a “trick” to quickly move a laser beam in three dimensions and then adapted that laser beam to the multi-photon microscope they were using. That allowed them to “see” the neuron’s function in three dimensions, giving them a much better view of its activity.

A multiphoton microscope looks much like a conventional, upright microscope but it has an adaption that allows it to look at tissues in sections. A conventional multiphoton microscope does that very slowly, he said.

“With ours, you can do it very quickly. We are starting to see how a single neuron behaves in our laboratory,” he said. The next step, he said, will be to use to it to look a clusters or colonies of neurons. This will enable them to actually see the neuronal interactions.

“At present, the technology is applied in my lab to study information processing of single neurons in brain slice preparations by 3D multi-site optical recording,” said Dr. Peter Saggau, professor of neuroscience at BCM and the paper’s senior author.

He is collaborating with two other labs on using the technology in other ways. In one, he said, researchers plan to use the technology to monitor nerve activity in the brains of lab animals in order study how populations of neurons communicate during visual stimulation. Another study attempts to use the technology to monitor stimulation of the acoustic nerve optically. Those scientists hope to reinstate hearing in lab animals whose inner ear receptors do not work.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/neuro/index.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>