Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking at neurons from all sides

29.04.2008
A new technique that marries a fast-moving laser beam with a special microscope that look at tissues in different optical planes will enable scientists to get a three-dimensional view of neurons or nerve cells as they interact, said Baylor College of Medicine scientists in a report that appears today in the journal Nature Neuroscience.

“Most microscopes can only study cell function in two dimensions,” said Dr. Gaddum Duemani Reddy, an M.D./Ph.D. student at BCM at Houston and Rice University and also first author of the study. “To look at different planes, you have move your preparation (of cells) or the objective lens. That takes time, and we are looking at processes that happen in milliseconds.”

To solve that problem, he said, they developed a “trick” to quickly move a laser beam in three dimensions and then adapted that laser beam to the multi-photon microscope they were using. That allowed them to “see” the neuron’s function in three dimensions, giving them a much better view of its activity.

A multiphoton microscope looks much like a conventional, upright microscope but it has an adaption that allows it to look at tissues in sections. A conventional multiphoton microscope does that very slowly, he said.

“With ours, you can do it very quickly. We are starting to see how a single neuron behaves in our laboratory,” he said. The next step, he said, will be to use to it to look a clusters or colonies of neurons. This will enable them to actually see the neuronal interactions.

“At present, the technology is applied in my lab to study information processing of single neurons in brain slice preparations by 3D multi-site optical recording,” said Dr. Peter Saggau, professor of neuroscience at BCM and the paper’s senior author.

He is collaborating with two other labs on using the technology in other ways. In one, he said, researchers plan to use the technology to monitor nerve activity in the brains of lab animals in order study how populations of neurons communicate during visual stimulation. Another study attempts to use the technology to monitor stimulation of the acoustic nerve optically. Those scientists hope to reinstate hearing in lab animals whose inner ear receptors do not work.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/neuro/index.html

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>