Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing astronomy into sharper focus

24.06.2002


Scientists from the University of Cambridge’s Astrophysics Group have today (21 June 2002) announced a collaboration with teams based in New Mexico, Puerto Rico and at the Naval Research Laboratory in Washington DC to design, install and operate a novel type of astronomical telescope for ultra-high angular resolution observations of stars, galaxies and quasars.


Cambridge Optical Aperture Synthesis Telescope (COAST)
© Cavendish Laboratory



The agreement between researchers based in the Astrophysics (AP) Group at the Cavendish Laboratory and the Magdalena Ridge Observatory Consortium(MROC) marks the first phase of a partnership between AP and MROC to design and commission an ambitious optical/infrared interferometric telescope at the Magdalena Ridge Observatory in New Mexico. Funding for this scientific study is being administered by the Office of Naval Research.

The new facility will comprise a collection of telescopes optically linked to form a single large telescope spread over an area larger than a football stadium. The combined power of the telescopes will provide images of astronomical objects with unprecedented sharpness: features 100 times smaller than the finest detail currently seen in images from the Hubble Space Telescope will be clearly visible.


Dr Chris Haniff, from the University of Cambridge’s Astrophysics Group, who is leading the Cambridge team, explained:

"This very high angular resolution will allow astronomers to study the formation of planets around other stars, to watch the final episodes in the lives of dying stars and see close to the hearts of active galaxies."

The telescope array, costing some $40M, will consist of 8 to 10 telescopes, each with a diameter of 1.4m, separated by distances of up to 400m. The signals from the telescopes will be combined in a central laboratory, forming what is known as an interferometric array.

In a process known as aperture synthesis, the combined signal is used to
make an image which is equivalent to the image that would be formed by a space-based telescope with a 400m diameter primary mirror - this can be compared with the 2.4m diameter mirror on the Hubble Space Telescope.

The feasibility of this novel type of optical and infrared telescope was first demonstrated by Cambridge scientists in the late 1980s. This same team, then headed by Professor John Baldwin, built the world’s first separated-element optical/infrared aperture synthesis telescope - the Cambridge Optical Aperture Synthesis Telescope (COAST) - in the mid 1990s.

This group of scientists have now joined forces with scientists in the USA to develop this technique for a new large-scale facility array.
The first phase of the partnership, announced today, will see both teams working towards a detailed design for the array, and the start of work on some of the critical subsystems for the telescope by researchers on both sides of the Atlantic.

In parallel, both partners will be seeking support for the eventual operation and maintenance budget of the array, which is expected to be available for routine scientific observations in late 2007.

A number of similar optical/infrared interferometer arrays are currently being commissioned elsewhere. The key scientific strength of the new array will be its ability to make true images of complex astronomical objects at a speed which is many times faster than other arrays. This is due to its large number of telescopes, each with sufficient collecting area to grasp the light from faint astronomical sources.

Beck Lockwood | alfa

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>