Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The coldest brown dwarf ever observed: Closing the gap between stars and planets

10.04.2008
An international team [1] led by French and Canadian astronomers has just discovered the coldest brown dwarf ever observed. Their results will soon be published in Astronomy & Astrophysics. This new finding was made possible by the performance of telescopes worldwide [2]: Canada France Hawaii Telescope (CFHT) and Gemini North Telescope, both located in Hawaii, and the ESO/NTT located in Chile.

The brown dwarf is named CFBDS J005910.83-011401.3 (it will be called CFBDS0059 in the following). Its temperature is about 350°C and its mass about 15-30 times the mass of Jupiter, the largest planet of our solar system [3]. Located about 40 light years from our solar system, it is an isolated object, meaning that it doesn't orbit another star.

Brown dwarfs are intermediate bodies between stars and giant planets (like Jupiter). The mass of brown dwarfs is usually less than 70 Jupiter masses. Because of their low mass, their central temperature is not high enough to maintain thermonuclear fusion reactions over a long time. In contrast to a star like our Sun, which spends most of its lifetime burning hydrogen, hence keeping a constant internal temperature, a brown dwarf spends its lifetime getting colder and colder after its formation.

The first brown dwarfs were detected in 1995. Since then, this type of stellar object has been found to share common properties with giant planets, even though differences remain. For example, clouds of dust and aerosols, as well as large amounts of methane, were detected in their atmosphere (for the coldest ones), just as in the atmosphere of Jupiter and Saturn. However, there were still two major differences. In the brown dwarf atmospheres, water is always in gaseous state, while it condenses into water ice in giant planets; and ammonia has never been detected in the brown dwarf near-infrared spectra, while it is a major component of Jupiter's atmosphere. CFBDS0059, the newly-discovered brown dwarf, looks much more like a giant planet than the known classes of brown dwarfs, both because of its low temperature and because of the presence of ammonia.

To date, two classes of brown dwarfs have been known: the L dwarfs (temperature of 1200-2000°C), which have clouds of dust and aerosols in their high atmosphere; and the T dwarfs (temperature lower than 1200°C), which have a very different spectrum because of methane forming in their atmospheres. Because it contains ammonia and has a much lower temperature than do L and T dwarfs, CFBDS0059 might be the prototype of a new class of brown dwarfs to be called the Y dwarfs. This new class would then become the missing link in the sequence from the hottest stars to giant planets of less than -100°C, by filling the gap now left in the midrange.

This discovery also has important implications in the study of extrasolar planets. The atmosphere of brown dwarfs looks very much like that of giant planets, therefore the same models are used to reproduce their physical conditions. Such modeling needs to be tested against observations. Observing the atmospheres of extrasolar planets is indeed very hard because the light from the planets is embedded in the much stronger light from their parent stars. Because brown dwarfs are isolated bodies, they are much easier to observe. Thus, looking to brown dwarfs with a temperature close to that of the giant planets will help in testing the models of extrasolar planets' atmospheres.

[1] The team of astronomers includes P. Delorme, X. Delfosse (Observatoire de Grenoble, France), L. Albert (CFHT, Hawaii), E. Artigau (Gemini Observatory, Chile), T. Forveille (Obs. Grenoble/France, IfA/Hawaii), C. Reylé (Observatoire de Besançon, France), F. Allard, A. C. Robin (CRAL, Lyon, France), D. Homeier (Göttingen, Germany), C.J. Willott (University of Ottawa, Canada), M. C. Liu, T. J. Dupuy (IfA, Hawaii).

[2] CFBDS0059 was discovered in the framework of the Canada-France Brown-Dwarfs survey. The object was first identified in pictures from the wide-field camera Megacam installed on the CFHT (Canada France Hawaii Telescope). Infrared pictures were then obtained with the NTT telescope (La Silla, ESO, Chile) and confirmed the low temperature of the object. Finally, the spectrum showing the presence of ammonia was obtained using the Gemini North Telescope (Hawaii).

[3] The mass of Jupiter is about 300 times the Earth's mass and about 1/1000e of the Sun's mass.

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/298/42/lang,en/

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>