Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA scientists identify smallest known black hole

03.04.2008
Using a new technique, two NASA scientists have identified the lightest known black hole. With a mass only about 3.8 times greater than our Sun and a diameter of only 15 miles, the black hole lies very close to the minimum size predicted for black holes that originate from dying stars.

"This black hole is really pushing the limits. For many years astronomers have wanted to know the smallest possible size of a black hole, and this little guy is a big step toward answering that question," says lead author Nikolai Shaposhnikov of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Shaposhnikov and his Goddard colleague Lev Titarchuk are presenting their results on Monday, March 31, at the American Astronomical Society High-Energy Astrophysics Division meeting in Los Angeles, Calif. Titarchuk also works at George Mason University in Fairfax, Va., and the US Naval Research Laboratory in Washington, DC. They will describe their results in more detail in a media telecon on April 1 at 1:30 p.m. EDT.

The tiny black hole resides in a Milky Way Galaxy binary system known as XTE J1650-500, named for its sky coordinates in the southern constellation Ara. NASA’s Rossi X-ray Timing Explorer (RXTE) satellite discovered the system in 2001. Astronomers realized soon after J1650’s discovery that it harbors a normal star and a relatively lightweight black hole. But the black hole’s mass had never been measured to high precision.

The method used by Shaposhnikov and Titarchuk has been described in several papers in the Astrophysical Journal. It uses a relationship between black holes and the inner part of their surrounding disks, where gas spirals inward before making the fatal plunge. When the feeding frenzy reaches a moderate rate, hot gas piles up near the black hole and radiates a torrent of X-rays. The X-ray intensity varies in a pattern that repeats itself over a nearly regular interval. This signal is called a quasi-periodic oscillation, or QPO.

Astronomers have long suspected that a QPO’s frequency depends on the black hole’s mass. In 1998, Titarchuk realized that the congestion zone lies close in for small black holes, so the QPO clock ticks quickly. As black holes increase in mass, the congestion zone is pushed farther out, so the QPO clock ticks slower and slower. To measure the black hole masses, Shaposhnikov and Titarchuk use archival data from RXTE, which has made exquisitely precise measurements of QPO frequencies in at least 15 black holes.

Last year, Shaposhnikov and Titarchuk applied their QPO method to three black holes whose masses had been measured by other techniques. In their new paper, they extend their result to seven other black holes, three of which have well-determined masses. "In every case, our measurement agrees with the other methods," says Titarchuk. "We know our technique works because it has passed every test with flying colors."

When Shaposhnikov and Titarchuk applied their method to XTE J1650-500, they calculated a mass of 3.8 Suns, with a margin of uncertainty of only half a Sun. This value is well below the previous black hole record holder with a reliable mass measurement, GRO 1655-40, which tips the scales at about 6.3 Suns.

Below some unknown critical threshold, a dying star should produce a neutron star instead of a black hole. Astronomers think the boundary between black holes and neutron stars lies somewhere between 1.7 and 2.7 solar masses. Knowing this dividing line is important for fundamental physics, because it will tell scientists about the behavior of matter when it is scrunched into conditions of extraordinarily high density.

Despite the diminutive size of this new record holder, future space travelers had better beware. Smaller black holes like the one in J1650 exert stronger tidal forces than the much larger black holes found in the centers of galaxies, which make the little guys more dangerous to approach. "If you ventured too close to J1650’s black hole, its gravity would tidally stretch your body into a strand of spaghetti," says Shaposhnikov.

Shaposhnikov adds that RXTE is the only instrument that can make the high-precision timing observations necessary for this line of research. "RXTE is absolutely crucial for these black hole mass measurements," he says.

Robert Naeye | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>