Old Galaxies Stick Together In The Young Universe

University of Nottingham PhD student Will Hartley, who led the study, will speak at the RAS National Astronomy Meeting in Belfast on Tuesday 1 April.

The distant galaxies identified in the UKIRT images are considered elderly because they are rich in old, red stars. However, because the light from these systems has taken up to 10 billion years to reach Earth, they are seen as they appeared in the very early Universe, just 4 billion years after the Big Bang. The presence of such fully evolved galaxies so early in the life of the cosmos is hard to explain and has been a major puzzle to astronomers studying how galaxies form and evolve.

Hartley and collaborators used the deep UKIRT images to estimate the mass of the dark matter surrounding the old galaxies by measuring how strongly the galaxies cluster together. All galaxies are thought to form within massive halos of dark matter which collapse under their own gravity from a smooth distribution of matter after the Big Bang.

These halos are invisible to normal telescopes but their mass can be estimated through analysis of galaxy clustering.

Hartley explains “Luckily, even if we don't know what dark matter is, we can understand how gravity will affect it and make it clump together. We can see that the old, red galaxies clump together far more strongly than the young, blue galaxies, so we know that their invisible dark matter halos must be more massive.”

The halos surrounding the old galaxies in the early Universe are found to be extremely massive, containing material which is one hundred thousand billion times the mass of our Sun. In the nearby Universe, halos of this size are known to contain giant elliptical galaxies, the largest galaxies known.

“This provides a direct link to the present day Universe,” says Hartley, “and tell us that these distant old galaxies must evolve into the most massive but more familiar elliptical-shaped galaxies we see around us today. Understanding how these enormous elliptical galaxies formed is one of the biggest open questions in modern astronomy and this is an important step in comprehending their history.”

IMAGES

Image of the elderly galaxies
http://www.nottingham.ac.uk/astronomy/UDS/UDS_files/bigger_pBzK3.jpg
Image caption: The white arrows point to a few of the old, massive galaxies at a distance of 10 billion light years, discovered in the UKIDSS Ultra-Deep survey. This cut-out image represents just 1/150th of the full survey. (Credit: UKIDSS UDS survey team)

FURTHER INFORMATION

The UKIDSS Ultra-Deep Survey
http://www.nottingham.ac.uk/astronomy/UDS/
UKIRT
http://www.jach.hawaii.edu/UKIRT/
Nottingham Astronomy group
http://www.nottingham.ac.uk/astronomy/
RAS National Astronomy Meeting
http://nam2008.qub.ac.uk
RAS home page
http://www.ras.org.uk

Media Contact

Robert Massey alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors