Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WMAP Reveals Neutrinos, End of Dark Ages, First Second of Universe

11.03.2008
NASA released this week five years of data collected by the Wilkinson Microwave Anisotropy Probe (WMAP) that refines our understanding of the universe and its development. It is a treasure trove of information, including at least three major findings:

New evidence that a sea of cosmic neutrinos permeates the universe Clear evidence the first stars took more than a half-billion years to create

a cosmic fog

Tight new constraints on the burst of expansion in the universe's first trillionth of a second

"We are living in an extraordinary time," said Gary Hinshaw of NASA's Goddard Space Flight Center in Greenbelt, Md. "Ours is the first generation in human history to make such detailed and far-reaching measurements of our universe."

WMAP measures a remnant of the early universe - its oldest light. The conditions of the early times are imprinted on this light. It is the result of what happened earlier, and a backlight for the later development of the universe. This light lost energy as the universe expanded over 13.7 billion years, so WMAP now sees the light as microwaves. By making accurate measurements of microwave patterns, WMAP has answered many longstanding questions about the universe's age, composition and development.

The universe is awash in a sea of cosmic neutrinos. These almost weightless sub-atomic particles zip around at nearly the speed of light. Millions of cosmic neutrinos pass through you every second.

"A block of lead the size of our entire solar system wouldn’t even come close to stopping a cosmic neutrino,” said science team member Eiichiro Komatsu of the University of Texas at Austin.

WMAP has found evidence for this so-called "cosmic neutrino background" from the early universe. Neutrinos made up a much larger part of the early universe than they do today.

Microwave light seen by WMAP from when the universe was only 380,000 years old, shows that, at the time, neutrinos made up 10% of the universe, atoms 12%, dark matter 63%, photons 15%, and dark energy was negligible. In contrast, estimates from WMAP data show the current universe consists of 4.6% percent atoms, 23% dark matter, 72% dark energy and less than 1 percent neutrinos.

Cosmic neutrinos existed in such huge numbers they affected the universe’s early development. That, in turn, influenced the microwaves that WMAP observes. WMAP data suggest, with greater than 99.5% confidence, the existence of the cosmic neutrino background - the first time this evidence has been gleaned from the cosmic microwaves.

Much of what WMAP reveals about the universe is because of the patterns in its sky maps. The patterns arise from sound waves in the early universe. As with the sound from a plucked guitar string, there is a primary note and a series of harmonics, or overtones. The third overtone, now clearly captured by WMAP, helps to provide the evidence for the neutrinos.

The hot and dense young universe was a nuclear reactor that produced helium. Theories based on the amount of helium seen today predict a sea of neutrinos should have been present when helium was made. The new WMAP data agree with that prediction, along with precise measurements of neutrino properties made by Earth-bound particle colliders.

Another breakthrough derived from WMAP data is clear evidence the first stars took more than a half-billion years to create a cosmic fog. The data provide crucial new insights into the end of the "dark ages," when the first generation of stars began to shine. The glow from these stars created a thin fog of electrons in the surrounding gas that scatters microwaves, in much the same way fog scatters the beams from a car’s headlights.

The first peak reveals a specific spot size for early universe sound waves, just as the length of guitar string gives a specific note. The second and third peaks are the harmonics. Credit: WMAP Science Team

> Click for larger image "We now have evidence that the creation of this fog was a drawn-out process, starting when the universe was about 400 million years old and lasting for half a billion years," said WMAP team member Joanna Dunkley of the University of Oxford in the U.K. and Princeton University in Princeton, N.J. "These measurements are currently possible only with WMAP."

A third major finding arising from the new WMAP data places tight constraints on the astonishing burst of growth in the first trillionth of a second of the universe, called “inflation”, when ripples in the very fabric of space may have been created. Some versions of the inflation theory now are eliminated. Others have picked up new support.

"The new WMAP data rule out many mainstream ideas that seek to describe the growth burst in the early universe," said WMAP principal investigator, Charles Bennett, of The Johns Hopkins University in Baltimore, Md. "It is astonishing that bold predictions of events in the first moments of the universe now can be confronted with solid measurements."

The five-year WMAP data were released this week, and results were issued in a set of seven scientific papers submitted to the Astrophysical Journal.

Prior to the release of the new five-year data, WMAP already had made a pair of landmark finds. In 2003, the probe's determination that there is a large percentage of dark energy in the universe erased remaining doubts about dark energy's very existence. That same year, WMAP also pinpointed the 13.7 billion year age of the universe.

Additional WMAP science team institutions are: the Canadian Institute for Theoretical Astrophysics, Columbia University, University of British Columbia, ADNET Systems, University of Chicago, Brown University, and UCLA.

Robert Naeye | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>