Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering the world’s fastest swimsuit

29.02.2008
A highly specialised computer modelling technique developed at The University of Nottingham has been instrumental in the design of a revolutionary new swimsuit which is now being hailed as the fastest in the world.

Dr Herve Morvan, a lecturer in fluid mechanics in the School of Mechanical, Materials and Manufacturing Engineering, is working as an advisor to the AQUALAB, Speedo’s competition research and development department, responsible for the development of Speedo’s new LZR Racer swimsuit.

Within a week of its launch athletes wearing the new swimsuit had broken three world records.

Speedo harnessed the expertise of NASA and a number of international research institutes and industrial partners such as ANSYS, one of the world’s leading engineering simulation software providers, to create the new suit.

The team at Nottingham specialises in Computational Fluid Dynamics (CFD), the computer modelling of fluid flow. The technique is rapidly developing in its technology and applications and can cut design times, increase productivity and give significant insight to fluid flows.

CFD is commonly used for analysis, for example, in the Rolls Royce University Technology Centre which specialises in research for the aeronautics industry, and for many other applications relating to the energy, biomedical and sports sectors. As well as engineers, experts in the School of Mathematical Sciences and the School of Physics and Astronomy develop and use numerical modelling techniques of fluid flow to provide insight in fluid problems ranging from the atomic scale to that of the universe.

Speedo AQUALAB scanned over 400 athletes and obtained the scan for a series of top athletes. Using CFD analysis Dr Morvan and his team were able to pin-point areas of high friction on the athlete’s body. With this information designers were able to position low friction fabric, exclusively developed by Speedo, in the right locations.

Dr Morvan, a lecturer in fluid mechanics, said: “CFD enabled us to use the compressive property of the suit to shape the body as ideally as possible, taking into account the physiological and bio-mechanical requirements of the athlete.”

The new suit has 5 per cent less drag than Speedo’s 2007 suit, the FS Pro, which saw swimmers break 21 world records.

Analysis by Dr Morvan and his team at The University of Nottingham was carried out in collaboration with flume work at the University of Otago, in New Zealand and fabric tests by NASA.

Dr Morvan who is now working with Speedo towards the 2012 Olympics in London said: “We are now building up toward active drag which accounts for the athlete motion and its interaction with the free surface. This should further validate the suit design as we move to the 2012 Olympics.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>