Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jekyll-Hyde neutron star discovered by researchers

25.02.2008
NASA and McGill scientists find star which morphs from pulsar to magnetar

Like something out of a Robert Louis Stevenson novel, researchers at NASA and McGill University discovered an otherwise normal pulsar which violently transformed itself temporarily into a magnetar, a stellar metamorphosis never observed before.

Powerful X-ray bursts from the pulsar in the Kes 75 supernova remnant were discovered by former McGill PhD Dr. Fotis Gavrill, currently assigned to NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in collaboration with Dr. Victoria Kaspi, leader of the McGill University Pulsar Group, her graduate student Maggie Livingstone, and very recent McGill PhD, Dr. Majorie Gonzalez, now of the University of British Columbia. Their results were published February 21 in the journal Science.

Pulsars and magnetars belong to the same class of ultradense, small stellar objects called neutron stars, left behind after massive stars die and explode as supernovae. Pulsars, by far the most common type, spin extremely rapidly and emit powerful bursts of radio waves. These waves are so regular that, when they were first detected in the 1960’s, researchers considered the possibility that they were signals from an extraterrestrial civilization. By contrast, magnetars are slowly rotating neutron stars which derive their energy from incredibly powerful magnetic fields, the strongest known in the universe. There are over 1800 known pulsars in our galaxy alone, but magnetars are much less common, said the researchers.

“Magnetars are actually very exotic objects,” said Dr. Kaspi, McGill’s Lorne Trottier Chair in Astrophysics and Cosmology and Canada Research Chair in Observational Astrophysics. “Their existence has only been established in the last 10 years, and we know of only a handful in the whole galaxy. They have dramatic X-ray and gamma-ray bursts and can emit huge flares, sometimes brighter than all other cosmic X-ray sources in the sky combined.”

This discovery, based on data from NASA’s Rossi X-ray Timing Explorer (RXTE) and Chandra X-ray Observatory satellites, is the long-sought-after missing link between the two types of neutron star, said the researchers. To date, the evolutionary relationship between pulsars and magnetars has been poorly understood. It was not clear if magnetars are simply a rare class of pulsars, or if some or all pulsars go through a magnetar phase as a normal part of their life cycles.

“Researchers have long been looking for transition objects,” explained Maggie Livingstone. “In particular we’ve kept our eyes on pulsars with high magnetic fields.”

“This source could be evolving into a magnetar,” added Dr. Kaspi. “Or it could just show occasional magnetar-like properties, we just don’t know yet. We’re very anxious to find out.”

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>