Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype measuring device for the most minuscule forces

22.02.2008
When chemists want to measure the bonding forces in molecules or other most minuscule forces very accurately, they have to calibrate their measuring instruments (for example the cantilevers, i.e. the measuring tips, of scanning force microscopes). And if it is a matter of comparing the attained results with other results, one must refer to a common basis.

In the case of scanning force microscopes, the nominal values for bending stiffnesses deviate distinctly from the actual values. With the current devices, calibrations of cantilevers are accurate to > 5%.

For forces in the nano- and piconewton range one therefore requires more accurate realisations and stable transfer standards.

In order to offer this in future, the Physikalisch-Technische Bundesanstalt (PTB) has set up the protoype of a nanonewton force-measuring device. First measurements show that the measuring principle functions well: The very small force (of approx. 50 pN) of a laser beam on the pendulum, the "heart" of the apparatus, is measured with a voltage (acting as counterforce), and this with a measuring uncertainty of 5 % to 10 %.

First measurements have shown that the measuring device is sufficiently protected against vibrations (so-called "seismic noise"). A large-scale device, which is to be set up next year, is envisaged to bring still further improvements here. Furthermore, other changes are also needed to be able to actually measure on cantilevers (as transfer standards).

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/nachrichten/2008/_nanokraft.html

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>