Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar exploration – Potential UK and NASA collaboration

15.02.2008
The British National Space Centre [BNSC] and the National Aeronautics and Space Administration [NASA ] have today [15th February 2008] issued a report from the Joint Working Group(JWG) on lunar exploration that outlines next steps in possible U.K.-U.S. space exploration cooperation.

A key area of cooperation under consideration is a mission to understand the Moon’s structure, listen for ‘Moonquakes’ and trial the lunar cell-phone network of the future.

The JWG report identified two potential elements of collaboration:
•the implementation of a UK led robotic lunar mission, such as the Moon Lightweight Interior and Telecoms Experiment (MoonLITE) mission;

•the development of science instruments and technology needed for mid-term robotic and human exploration activities.

Commenting on the report Professor Keith Mason, CEO Science and Technology Facilities Council and Chairman of the UK Space Board [BNSC governing body], said,’ This joint report represents a milestone in our cooperation with NASA whilst building upon our longstanding collaboration in such highly successful science missions as Swift, Stereo, Mars Reconnaissance Orbiter and Cassini. The proposed missions provide an opportunity to harness the UK’s world-class expertise in small satellite, communication and robotic technologies focused on exploration of the Moon.”

MoonLITE is a proposed UK led small robotic mission to the Moon. It comprises a satellite which would travel to the Moon, enter its orbit and then release three or four ‘penetrators’ - small missile-like vehicles – distributed over the Moon’s surface. Each penetrator would impact at high speed and embed instruments just under the Moon’s surface designed to reveal the interior structure of the Moon. The satellite orbiter would then act as a telecommunications relay station between the surface penetrators and earth during their 1 year life.

MoonLITE would deliver important new science about the Moon’s interior and history while also testing the space communications network needed by future robotic and human explorers. The US and UK have enjoyed a long history of successful space cooperation. MoonLITE would build on this success and allow both partners the opportunity to take advantage of their particular strengths. NASA is considering several technologies and experiments as potential US contributions to the UK mission.

The proposed next steps involve an international scientific ‘peer-review’ and a more detailed technical study of MoonLITE leading to a definitive cost estimate before a decision to go-ahead is taken. The launch date for MoonLITE is scheduled for no earlier than 2012.

Professor Mason added,” This joint report between the UK and NASA, coupled with the UK’s major role in ESA’s Aurora programme of planetary exploration and our involvement in helping to shape a Global Exploration Strategy, means the UK is fully exploiting and strategically maximising its technological and scientific strengths in space exploration”.

The BNSC-NASA JWG originated from a Joint Statement of Intent for Cooperation in the Field of Space Exploration signed by NASA Administrator Michael Griffin and UK Director General for Science and Innovation Sir Keith O’Nions on April 19, 2007, in Washington, DC.

Peter Barratt | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>