Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser beams help take the twinkle out of starlight

04.06.2002


If you have ever peered down a highway on a sunny day, you have probably seen the rising, wavelike ripples of heated air that distort the appearance of objects near the horizon. Similar disturbances in the atmosphere above us make stars twinkle as their light is distorted on the way down to Earth.



Although twinkling stars inspired a well-known nursery rhyme, the effect hampers astronomers’ attempts to study the heavens. Scientists at Lawrence Livermore National Laboratory are now building systems, known as a synthetic guide stars, to help astronomers accurately account for atmospheric distortions wherever they choose to point their telescopes. Pictures collected by large terrestrial telescopes equipped with such systems often exceed the quality of Hubble Space Telescope images.

Guide stars have long played an important role in correcting atmospheric distortion. Astronomers pick a bright, stable star near a region of the sky that they hope to study and monitor distortions in the guide star image to deduce the optical properties of the atmosphere. They then correct their images with adaptive optics, which distort telescope components to offset atmospherically induced errors. Generally, adaptive optics corrections involve warping light-collecting telescope mirrors with computer controlled motors that respond to changes in the guide star image.


Guide stars and adaptive optics combine to provide stunning pictures of planets, galaxies, and other objects. Unfortunately, astronomers find suitable natural guide stars in only one percent of the sky. At the 2002 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (May 19-23, www.cleoconference.org) meeting in Long Beach, CA, Deanna Pennington explained that she and her colleagues at Lawrence Livermore National Laboratory have now opened up a much larger portion of the heavens with a manmade analog to guide stars. Pennington estimates that the synthetic guide star system can correct for atmospheric turbulence in about three fifths of the sky.

The researchers create their synthetic guide star by beaming a laser through the atmosphere in the direction of an object they wish to study. The frequency of the laser is specifically chosen to excite sodium atoms, causing them to emit yellow light. Sodium is relatively scarce in most of our atmosphere, but incoming meteors deposit a concentrated layer of the atoms in the mesosphere, about ninety kilometers above the earth. The laser paints an artificial star in the sky when it strikes the sodium rich layer.

Pennington points out that natural stars are best for correcting atmospheric distortion. Stars are so far away that they appear to be point light sources effectively located at infinity. Synthetic guide stars, in comparison, are too close to completely eliminate atmospheric errors, but they provide astronomers with seventy-five percent of the benefit offered by natural guide stars.

Any telescope equipped with adaptive optics can benefit from the addition of a synthetic guide star system, but the technology will be indispensable for future, earth-based observations. "Very large telescopes," says Pennington," must use adaptive optics to approach their theoretical performance. Atmospheric turbulence primarily dictates the ultimate resolution a telescope can achieve." Telescope designs being considered for future observatories may sport mirrors thirty to a hundred meters across, and will dwarf even cutting-edge telescopes such as the ten-meter telescope at Keck Observatory in Hawaii. Larger telescopes collect more light and could provide ever high resolution images, provided we correct for the hazy blanket of gas that surrounds our planet.

Although the Keck telescope already uses adaptive optics that rely on natural guide stars, Pennington’s group installed a new sodium guide star system at the observatory last year. Keck’s adaptive optics successfully locked on to the laser-generated guide star in tests performed last December, but modifications to the system interfaces prevented astronomers from using it to collect images. If the final installation stages go as planned, a synthetic guide star shining over Hawaii should help astronomers peer into the heavens by Christmas 2002.

For more information contact:

Deanna Pennington pennington1@llnl.gov
Lawrence Livermore National Laboratory
P.O. Box 5500, L-477
Livermore, CA 94551
925-423-9234


James Riordon | EurekAlert

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>