Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening for the cosmic symphony

12.02.2008
New SU supercomputer will help scientists listen for black holes

Scientists hope that a new supercomputer being built by Syracuse University's Department of Physics may help them identify the sound of a celestial black hole.

The supercomputer, dubbed SUGAR (SU Gravitational and Relativity Cluster), will soon receive massive amounts of data from the California Institute of Technology (Caltech) that was collected over a two-year period at the Laser Interferometer Gravitational-Wave Observatory (LIGO). LIGO is funded by the National Science Foundation and operated by Caltech and the Massachusetts Institute of Technology.

Duncan Brown, assistant professor of physics and member of SU's Gravitational Wave Group, is assembling SUGAR. The department's Gravitational Wave Group is also part of the LIGO Scientific Collaboration (LSC), a worldwide initiative to detect gravitational waves. Brown worked on the LIGO project at Caltech before coming to SU last August.

Gravitational waves are produced by violent events in the distant universe, such as the collision of black holes or explosions of supernovas. The waves radiate across the universe at the speed of light. While Albert Einstein predicted the existence of these waves in 1916 in his general theory of relativity, it has taken decades to develop the technology to detect them. Construction of the LIGO detectors in Hanford, Wash., and Livingston, La., was completed in 2005. Scientists recently concluded a two-year "science run" of the detectors and are now searching the data for these waves. LSC scientists will be analyzing this data while the sensitivity of the detectors is being improved. Detectors have also been built in France, Germany, Italy and Japan.

Before they can isolate the sound of a black hole from the LIGO data, the scientists must figure out what a black hole sounds like. That's where Einstein's theories come in. Working with colleagues from the Simulating eXtreme Spacetimes (SXS) project, Brown will use SUGAR and Einstein's equations to create models of gravitational wave patterns from the collision of two black holes. SXS is a collaborative project with Caltech and Cornell University.

Black holes are massive gravitational fields in the universe that result from the collapse of giant stars. Because black holes absorb light, they cannot be studied using telescopes or other instruments that rely on light waves. However, scientists believe they can learn more about black holes by listening for their gravitational waves.

"Looking for gravitational waves is like listening to the universe," Brown says. "Different kinds of events produce different wave patterns. We want to try to extract a wave pattern -- a special sound -- that matches our model from all of the noise in the LIGO data."

It takes massive amounts of computer power and data storage capacity to analyze the data against the gravitational wave models Duncan and his colleagues built. SUGAR is a collection of 80 computers, packing 320 CPUs of power and 640 Gigabytes of random access memory. SUGAR also has 96 terabytes of disk space on which to store the LIGO data.

It also takes a dedicated, high-speed fiber-optic network to transfer the data between Caltech and SU. To accomplish that, SU's Information Technology and Services (ITS) collaborated with NYSERNet to build a special pathway for the LIGO data on the high-speed fiber optic network that crisscrosses the United States. The one-gigabit pathway begins in the Physics Building and traverses SU's fiber-optic network to Machinery Hall and then to a network facility in downtown Syracuse, which the University shares with NYSERNet. From there, the pathway connects to NYSERNet's fiber-optic network and goes to New York City. In New York City, the pathway switches to the Internet2 high-speed network and traverses the country, ending in a computer room in Caltech.

Both the supercomputer and the high-speed network are expected to be up and running by the end of February. Once the data is transferred to SU from Caltech, Brown and his LSC colleagues will begin to listen to the "cosmic symphony." "Gravitational waves can teach us much about what is out there in the universe," Brown says. "We've never looked at Einstein's theory in this way."

Judy Holmes | EurekAlert!
Further information:
http://www.syr.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>