Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using musical chords to analyze and illustrate hydrogen molecule's response to laser pulses

04.02.2008
For Kansas State University physics professor Uwe Thumm, confirmation of a theory about the behavior of small molecules became music to his ears -- literally. He and colleagues in Heidelberg, Germany, have shown how a hydrogen molecule responds to laser pulses by using the changing musical chord created by the molecule's vibrational motion.

Thumm is a member of K-State's J.R. Macdonald Laboratory, where he is among several researchers who work on the properties and behavior of atoms and small molecules.

For decades, researchers had used the Macdonald Laboratory to make atoms and molecules collide with particles. Thumm said much of what scientists know about atoms and molecules is based on such collision experiments. To predict and explain what happens in these collisions, a large group of experimental physicists works closely with Thumm and two other theorists. The theorists use computers, make models and crunch numbers with the hope of producing results that are compatible with what experiments show.

Thanks to improvements in laser technology, around 1999 the Macdonald Laboratory researchers realized that they could transfer a lot of their expertise in atomic collisions to study in detail what happens when atoms and molecules get irradiated by very intense laser light. The new laser systems in the laboratory offer some advantages over the big particle accelerators, Thumm said. The laser pulses offer more control and can be made so short that the researchers now routinely observe the motion of nuclei inside small molecules in time. In addition, the laser pulses' peak intensity is enormous and would equal all of the sun's light focused onto a small spot of the size of a postage stamp or smaller.

Motivated by these opportunities, Thumm and his colleagues became curious about figuring out what would happen if the smallest and simplest molecule, hydrogen, were exposed to such ultra short and intense laser pulses. Together with his postdoctoral collaborator Bernold Feuerstein, Thumm developed a model and did calculations to determine how laser pulses influence the motion of the two protons in the hydrogen molecule.

"The short answer is that the laser pulse either makes the molecules vibrate more violently or blows them apart," Thumm said. He said this wasn't surprising because in the hydrogen molecule, two protons are connected by two electrons that function like a spring. When hit with the laser pulses, the protons oscillate back and forth.

Although this model may be easy to imagine on a large scale, Thumm said particles behave differently at the quantum level. This means that determining the locations of these oscillating protons isn't easy. Thumm described determining the protons' movements after being hit with the laser like what happens if you drop a marble in a bathtub. Looking at the circular ripples of water in the center of the tub, it's pretty easy to tell where the marble was dropped in. But when those ripples bounce off the sides of the tub, the wave pattern changes shape, and it becomes harder to tell where the marble was dropped. The wave gets delocalized. Thumm said the same thing happens to the protons not in a matter of seconds, but in a matter of femtoseconds -- that's a billionth of a millionth of a second. After about 60 femtoseconds, it's impossible to tell where the protons are.

"You quickly loose track of what the distance between the two protons is," Thumm said." All you can say is that they have a certain likelihood of being at a certain distance. This is in agreement with the bathtub experiment: Seconds after the marble was dropped, you can't tell where exactly it plunged in."

But things work differently at the quantum level, and the researchers were surprised that about 600 femtoseconds after being hit with the laser, the distance between the protons again becomes well defined. "We call this a revival of the original motion of the protons," Thumm said. "It's not going to happen in the bathtub, but it happens at the quantum level."

Thumm and Feuerstein published their theoretical prediction in 2003. Thumm said that they were pleasantly surprised when experiments at the Max-Planck Institute in Heidelberg, Germany, in 2006 confirmed the revival described in their model. "The agreement between the new experiments and our model was almost perfect and exceeded our expectations," Thumm said.

Feuerstein had since moved to Heidelberg, where he and his group of researchers continued to collaborate with Thumm's group at K-State. Excited about the success of their model, they began to analyze the molecule's vibrational motion by breaking it down into its various frequencies. Each frequency being like a note in a chord, the frequencies told researchers how the protons were behaving. However, the frequency of these molecular vibrations is way above the audible range. The two researchers share an interest in music and had collaborated musically before. So when it came time to illustrate the revival, they decided the best way to do it was to scale the frequencies down to 1,000 Hertz, which is in the range at which the human ear hears best. "This way you can listen to the vibrations and hear the revival. In the same way sound is analyzed and decomposed, we decomposed the vibration with regard to the frequencies," Thumm said. Their result, a changing musical chord coupled with a movie illustrating the protons' vibrations can be heard and viewed at http://www.mpg.de/video/FilmundoAudio-KdM.wmv

Thumm said researchers hope to be able to do the same thing for more complex molecules like water or methane. Just as a C Major chord sounds different from a d minor chord, Thumm said other molecules also would have their own unique sound. Thumm and Feuerstein's most recent work was first published last fall in the Physical Review Letters. Their research was supported by the National Science Foundation, the U.S. Department of Energy and the Max-Planck Society. Thumm said such basic research supports the long-term goal of applying lasers to steer chemical reactions. The hope is to largely increase the efficiency of chemical reactions by enhancing desired reaction pathways with lasers, he said.

Uwe Thumm | EurekAlert!
Further information:
http://www.mpg.de/video/FilmundoAudio-KdM.wmv

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>