Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-funded instrument nails nova

30.01.2008
First results from a new NASA-funded scientific instrument at the W. M. Keck Observatory in Hawaii are helping scientists overturn long-standing assumptions about powerful explosions called novae and have produced the first unified model for a nearby nova called RS Ophiuchi.

"We were getting ready for a routine engineering run when all of a sudden the nova went off. It was very bright and easy to observe, so we took this opportunity and turned it into gold," says team member Marc Kuchner of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Kuchner and his colleagues used the "nulling" mode of the Keck Interferometer, which is part of the NASA-funded Keck Interferometer. This state-of-the-art instrument combines starlight using two 10-meter (33 feet) telescopes. In the nulling mode, the interferometer suppresses the blinding light of a star so researchers can study the surrounding environment. The instrument helps researchers observe very faint objects near bright sources and produces ten times more resolving power than a single Keck telescope working alone. It is the only instrument of its kind in operation.

The Keck Nuller was undergoing tests on February 12, 2006, when a nova flared up in the constellation Ophiuchus. The system, known as RS Ophiuchi, consists of a white dwarf and a red giant. The red giant is gradually shedding its massive gaseous outer layers, and the white dwarf is sweeping up much of this wind, growing in mass over time. As the matter builds up on the white dwarf’s surface it eventually reaches a critical temperature that ignites a thermonuclear explosion that causes the system to brighten 600-fold. RS Ophiuchi was previously seen to blow its stack in 1898, 1933, 1958, 1967, and 1985, so astronomers were eagerly anticipating the 2006 eruption.

Just 3.8 days after the nova was detected, the group observed the explosion with the Keck Nuller. The team set the instrument to cancel out the nova’s light, allowing the group to see the much fainter surrounding material. The group next adjusted the nuller to observe the extremely bright blast zone.

The instrument’s versatility was key to a surprising discovery. The nuller saw no dust in the bright zone, presumably because the nova’s blast wave vaporized dust particles. But farther from the white dwarf, at distances starting around 20 times the Earth-Sun distance, the nuller recorded the spectral signature of silicate dust. The blast wave had not yet reached this zone, so the dust must have pre-dated the explosion.

"This flies in the face of what we expected. Astronomers had previously thought that nova explosions actually create dust," says Richard Barry of NASA Goddard, lead author of a paper on the Keck observations that will be published in the Astrophysical Journal.

The team thinks the dust is created as the white dwarf plows through the red giant’s wind, creating a pinwheel pattern of higher-density regions that is reminiscent of galaxy spiral arms. Inside these spiral arms, atoms reach low enough temperatures and high enough densities to allow atoms to stick together to form dust particles. The nova’s blast wave has since destroyed RS Ophiuchi’s pinwheel pattern, but it should re-form over the next few years, and future Spitzer Space Telescope observations could see it.

Most studies of RS Ophiuchi have relied on spectroscopic models, but those methods have not been able to distinguish various nova components with as much detail as the interferometer. The Keck Nuller measured one component of the RS Ophiuchi system to an accuracy of just 4 milliarcseconds, or about the size of a basketball seen 7,500 miles away.

Barry is also coauthor of a paper based on Spitzer observations of RS Ophiuchi. This paper reports independent evidence for silicate dust that predates the 2006 explosion.

"The RS Ophiuchi observations are just a small taste of the power and potential we expect from the Keck Nuller," says coauthor William Danchi of NASA Goddard. "But ultimately we want to launch a nulling interferometer into space to image extrasolar planets. These Keck results are a technological and scientific pathfinder toward that future."

Robert Naeye | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

nachricht Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles
25.07.2017 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>