Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists weigh ingredients in recipe of the Universe

24.05.2002


An international team of scientists from Cambridge, Manchester and Tenerife has released the first results of new high-precision observations of the relic radiation from the Big Bang, often called the cosmic microwave background or CMB.



These observations have been made with a novel radio telescope called the Very Small Array (VSA) situated on Mount Teide in Tenerife. The images show the beginnings of the formation of structure in the early Universe.

From the properties of the image, scientists can obtain vital information on just what happened in the early universe and distinguish between competing cosmological theories.


Intriguingly, when combined with existing information on the CMB, they seem to show just how much the growth of the Universe itself (and of structures in it) is controlled by matter and how much by the mysterious dark energy that is now thought to pervade the vacuum of space.

The VSA telescope works by being able to detect very faint variations in the temperature of relic radiation – the radiation left over from the Big Bang.

Today we can see this radiation in all directions on the sky at a temperature of just three degrees centigrade above absolute zero, giving a picture of the Universe when it was just one 50,000th of its present age.

Because galaxies must have formed out of the primeval fireball, astrophysicists have predicted that they will have left imprints in the radiation. Across the sky, there should be tiny variations in the temperature of the relic radiation. However these are very weak - only one 10,000th of a degree centigrade.

During its first year of operation the VSA has observed three patches of sky, each some 8 x 8 degrees across. It can see detail down to one third of a degree, well matched to the typical size of interesting temperature variations.
The VSA has 14 aerials, each similar to a satellite TV dish but only 15 cm across. The signals from each aerial are combined, forming an interferometric array - a technique pioneered by Cambridge physicists.

The array is able to filter out unwanted terrestrial and atmospheric radiation allowing the the extremely faint CMB sky signal common to all the aerials to be detected. This approach allows high precision observations to be made at modest cost - the capital cost of the VSA was £2.6 million.

The performance of the VSA also results from using advanced receivers built at Manchester University and from the outstanding atmospheric conditions at the 2.4 km high Teide Observatory on Tenerife. The VSA can therefore measure specific, individual structures in the relic radiation with great precision.

A small number of other experiments have made similar observations. The different experiments work in different ways and face different challenges and sources of error; a key advantage of this diversity is that if their results agree, one can be confident that they are correct.

One special strength of the VSA is that it is an interferometer array; another is that it is able to robustly remove the contaminating radiation from radiogalaxies and quasars that lie between us and the CMB relic radiation.

The VSA results provide amazing confirmation of the current picture of the Universe.

Beck Lockwood | alphagalileo

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>