Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists uncover new solution for cosmic collisions

14.01.2008
It turns out that our math teachers were right: being able to solve problems without a calculator does come in handy in the “real” world. Two theoretical physicists at Rensselaer Polytechnic Institute have used what they call “pen-and-paper math” to describe the motion of interstellar shock waves — violent events associated with the birth of stars and planets.

The findings, published recently in the Monthly Notices of the Royal Astronomical Society, could provide astronomers with important information on the history of the solar system, the formation of stars, and the creation of chemicals that may have formed the basis for planets and even life on Earth.

“Shock waves can teach us valuable information about the history of our solar system,” said Wayne Roberge, lead author and professor of physics, applied physics, and astronomy at Rensselaer. “If we can understand shock waves — how they move, what leads to their formation, their temperature — we can begin to understand where we came from and what our galaxy went through five billion years ago.”

The mathematical solution developed by Roberge and his colleague, adjunct professor Glenn Ciolek, reveals the force and movement of shock waves in plasma, the neutral and charged matter that makes up the dilute “air” of space. Unlike many previous studies of its kind, the researchers focused specifically on shock waves in plasma, which move matter in very different ways than the uncharged air on Earth.

According to the researchers, the findings could influence the success of research conducted by NASA’s upcoming mission, the Stratospheric Observatory for Infrared Astronomy (SOFIA), a modified Boeing 747SP aircraft with an infrared telescope expected to begin test flights in the coming months. Roberge noted that the findings could also be important for studies using NASA’s Spitzer Space Telescope (the infrared sister of the Hubble Telescope).

“Astronomers are now venturing into infrared telescopes, which allows you to look deeper into space,” Roberge said. “But because they can only detect heat, the search for chemicals in deep space using infrared technology is greatly hindered in cold interstellar space.” Super-hot shock waves are like fiery arrows in the sky when viewed through an infrared telescope, pointing out the origins and destination of chemicals throughout the universe, Roberge said.

“Our mathematical solution will help point astronomers in the right direction when they look at shock waves,” he said. “It lets them know what they should discover. We hope the actual space images developed in the coming months and years prove our calculations to be correct.”

As shock waves travel, they heat and condense interstellar plasma, forming new chemical compounds through intense heat and pressure. The motion of shock waves also distributes the chemical products around the galaxy. On Earth, shock waves are commonly associated with supersonic aircraft and explosions. In space, shock waves are commonly associated with the birth or death of a star.

When stars are born, they often emit jets of matter moving at hundreds of thousands of miles per hour. The impact of these jets onto surrounding material creates an extreme and sudden disturbance. This material does not have time to react to the sudden pile-up of energy and mass. Shock waves lash out into the surrounding plasma to expel the sudden force. These shock waves spread material through space, potentially “seeding” new solar systems with chemicals that may be important for life.

“Now that we understand how fast and far these waves move in space, we can begin to understand how chemicals, including chemicals necessary for life, can be formed by shock waves and spread around the universe to form new stars, planets, and life,” Roberge said.

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>