Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer could throw light on 'mysterious' dark energy

14.01.2008
Cosmologists have run a series of huge computer simulations of the Universe that could ultimately help solve the mystery of dark energy.

Results of the simulations, carried out by Durham University’s world-leading Institute for Computational Cosmology (ICC), tell researchers how to measure dark energy – a repulsive force that counteracts gravity.

The findings, published today (Friday, January 11) in the Monthly Notices of the Royal Astronomical Society, will also provide vital input into the design of a proposed satellite mission called SPACE – the SPectroscopic All-sky Cosmic Explorer - that could unveil the nature of dark energy.

The discovery of dark energy in 1998 was completely unexpected and understanding its nature is one of the biggest problems in physics.

Scientists believe dark energy, which makes up 70 per cent of the Universe, is driving its accelerating expansion. If this expansion continues to accelerate experts say it could eventually lead to a Big Freeze as the Universe is pulled apart and becomes a vast cold expanse of dying stars and black holes.

The Durham research was funded by the Science and Technology Facilities Council and the European Commission

The simulations, which took 11 days to run on Durham’s unique Cosmology Machine (COSMA) computer, looked at tiny ripples in the distribution of matter in the Universe made by sound waves a few hundred thousand years after the Big Bang.

The ripples are delicate and some have been destroyed over the subsequent 13 billion years of the Universe, but the simulations showed they survived in certain conditions.

By changing the nature of dark energy in the simulations, the researchers discovered that the ripples appeared to change in length and could act as a “standard ruler” in the measurement of dark energy.

ICC Director Professor Carlos Frenk said: “The ripples are a ‘gold standard’. By comparing the size of the measured ripples to the gold standard we can work out how the Universe has expanded and from this figure out the properties of the dark energy.

“Astronomers are stuck with the one universe we live in. However, the simulations allow us to experiment with what might have happened if there had been more or less dark energy in the universe.”

In the next five to 10 years a number of experiments are planned to explore dark energy. The Durham simulation has demonstrated the feasibility of the SPACE satellite mission proposed to the European Space Agency’s (ESA) Cosmic Vision programme.

The project has been put forward by an international consortium of researchers including the Durham team.

SPACE, which is led by Bologna University, in Italy, is through to the next round of assessment by the ESA and if successful is planned to launch in 2017.

Co-principal investigator Professor Andrea Cimatti, of Bologna University, said: “Thanks to the ICC simulations it is possible to predict what SPACE would observe and to plan how to develop the mission parameters in order to obtain a three-dimensional map of the Universe and to compare it with the predictions of the simulations.

“Thanks to this comparison it will be possible to unveil the nature of dark energy and to understand how the structures in the Universe built up and evolved with cosmic time.”

Alex Thomas | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>