Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and sound – the way forward for better medical imaging

13.12.2007
Detection and treatment of tumours, diseased blood vessels and other soft-tissue conditions could be significantly improved, thanks to an innovative imaging system being developed that uses both light and sound.

The system uses extremely short pulses of low-energy laser light to stimulate the emission of ultrasonic acoustic waves from the tissue area being examined. These waves are then converted into high-resolution 3D images of tissue structure.

This method can be used to reveal disease in types of tissue that are more difficult to image using techniques based on x-rays or conventional ultrasound. For example, the new system is better at imaging small blood vessels, which may not be picked up at all using ultrasound. This is important in the detection of tumours, which are characterised by an increased density of blood vessels growing into the tissue.

The technique, which is completely safe, will help doctors diagnose, monitor and treat a wide range of soft-tissue conditions more effectively.

The first of its kind in the world, the prototype system has been developed by medical physics and bioengineering experts at University College London, with funding from the Engineering and Physical Sciences Research Council (EPSRC). It is soon to undergo trials in clinical applications, with routine deployment in the healthcare sector envisaged within around 5 years.

The emission of an acoustic wave when matter absorbs light is known as the photoacoustic effect. Harnessing this basic principle, the new system makes use of the variations in the sound waves that are produced by different types of soft human tissue to identify and map features that other imaging methods cannot distinguish so well.

By appropriate selection of the wavelength of the laser pulses, the light can be controlled to penetrate up to depths of several centimetres. The technique therefore has important potential for the better imaging of conditions that go deep into human tissue, such as breast tumours, and for contributing to the diagnosis and treatment of vascular disease.

The prototype instrument, however, has been specifically designed to image very small blood vessels (with diameters measured in tens or hundreds of microns) that are relatively close to the surface. Information generated about the distribution and density of these microvessels can in turn provide valuable data about skin tumours, vascular lesions, burns, other soft tissue damage, and even how well an area of tissue has responded to plastic surgery following an operation.

The development process has included theoretical and experimental investigations of photoacoustic interactions with soft tissue, development of appropriate computer image-reconstruction algorithms, and construction of a prototype imaging instrument incorporating the new technique.

“This new system offers the prospect of safe, non-invasive medical imaging of unprecedented quality,” says Dr Paul Beard who leads UCL’s Photoacoustic Imaging Group. “It also has the potential to be an extremely versatile, relatively inexpensive and even portable imaging option.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>