Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and sound – the way forward for better medical imaging

13.12.2007
Detection and treatment of tumours, diseased blood vessels and other soft-tissue conditions could be significantly improved, thanks to an innovative imaging system being developed that uses both light and sound.

The system uses extremely short pulses of low-energy laser light to stimulate the emission of ultrasonic acoustic waves from the tissue area being examined. These waves are then converted into high-resolution 3D images of tissue structure.

This method can be used to reveal disease in types of tissue that are more difficult to image using techniques based on x-rays or conventional ultrasound. For example, the new system is better at imaging small blood vessels, which may not be picked up at all using ultrasound. This is important in the detection of tumours, which are characterised by an increased density of blood vessels growing into the tissue.

The technique, which is completely safe, will help doctors diagnose, monitor and treat a wide range of soft-tissue conditions more effectively.

The first of its kind in the world, the prototype system has been developed by medical physics and bioengineering experts at University College London, with funding from the Engineering and Physical Sciences Research Council (EPSRC). It is soon to undergo trials in clinical applications, with routine deployment in the healthcare sector envisaged within around 5 years.

The emission of an acoustic wave when matter absorbs light is known as the photoacoustic effect. Harnessing this basic principle, the new system makes use of the variations in the sound waves that are produced by different types of soft human tissue to identify and map features that other imaging methods cannot distinguish so well.

By appropriate selection of the wavelength of the laser pulses, the light can be controlled to penetrate up to depths of several centimetres. The technique therefore has important potential for the better imaging of conditions that go deep into human tissue, such as breast tumours, and for contributing to the diagnosis and treatment of vascular disease.

The prototype instrument, however, has been specifically designed to image very small blood vessels (with diameters measured in tens or hundreds of microns) that are relatively close to the surface. Information generated about the distribution and density of these microvessels can in turn provide valuable data about skin tumours, vascular lesions, burns, other soft tissue damage, and even how well an area of tissue has responded to plastic surgery following an operation.

The development process has included theoretical and experimental investigations of photoacoustic interactions with soft tissue, development of appropriate computer image-reconstruction algorithms, and construction of a prototype imaging instrument incorporating the new technique.

“This new system offers the prospect of safe, non-invasive medical imaging of unprecedented quality,” says Dr Paul Beard who leads UCL’s Photoacoustic Imaging Group. “It also has the potential to be an extremely versatile, relatively inexpensive and even portable imaging option.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>