Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remarkable White Dwarf Star Possibly Coldest, Dimmest Ever Detected

24.06.2014

A team of astronomers has identified possibly the coldest, faintest white dwarf star ever detected. This ancient stellar remnant is so cool that its carbon has crystallized, forming -- in effect -- an Earth-size diamond in space.

“It’s a really remarkable object,” said David Kaplan, a professor at the University of Wisconsin-Milwaukee. “These things should be out there, but because they are so dim they are very hard to find.”


Artist impression of a white dwarf star in orbit with pulsar PSR J2222-0137. It may be the coolest and dimmest white dwarf ever identified.

Credit: B. Saxton (NRAO/AUI/NSF)

Kaplan and his colleagues found this stellar gem using the National Radio Astronomy Observatory’s (NRAO) Green Bank Telescope (GBT) and Very Long Baseline Array (VLBA), as well as other observatories.

White dwarfs are the extremely dense end-states of stars like our Sun that have collapsed to form an object approximately the size of the Earth. Composed mostly of carbon and oxygen, white dwarfs slowly cool and fade over billions of years. The object in this new study is likely the same age as the Milky Way, approximately 11 billion years old.

Pulsars are rapidly spinning neutron stars, the superdense remains of massive stars that have exploded as supernovas. As neutron stars spin, lighthouse-like beams of radio waves, streaming from the poles of its powerful magnetic field, sweep through space. When one of these beams sweeps across the Earth, radio telescopes can capture the pulse of radio waves.

The pulsar companion to this white dwarf, dubbed PSR J2222-0137, was the first object in this system to be detected. It was found using the GBT by Jason Boyles, then a graduate student at West Virginia University in Morgantown.

These first observations revealed that the pulsar was spinning more than 30 times each second and was gravitationally bound to a companion star, which was initially identified as either another neutron star or, more likely, an uncommonly cool white dwarf. The two were calculated to orbit each other once every 2.45 days.

The pulsar was then observed over a two-year period with the VLBA by Adam Deller, an astronomer at the Netherlands Institute for Radio Astronomy (ASTRON). These observations pinpointed its location and distance from the Earth -- approximately 900 light-years away in the direction of the constellation Aquarius. This information was critical in refining the model used to time the arrival of the pulses at the Earth with the GBT.

By applying Einstein's theory of relativity, the researchers studied how the gravity of the companion warped space, causing delays in the radio signal as the pulsar passed behind it. These delayed travel times helped the researchers determine the orientation of their orbit and the individual masses of the two stars. The pulsar has a mass 1.2 times that of the Sun and the companion a mass 1.05 times that of the Sun.

These data strongly indicated that the pulsar companion could not have been a second neutron star; the orbits were too orderly for a second supernova to have taken place.

Knowing its location with such high precision and how bright a white dwarf should appear at that distance, the astronomers believed they should have been able to observe it in optical and infrared light.

Remarkably, neither the Southern Astrophysical Research (SOAR) telescope in Chile nor the 10-meter Keck telescope in Hawaii was able to detect it.

“Our final image should show us a companion 100 times fainter than any other white dwarf orbiting a neutron star and about 10 times fainter than any known white dwarf, but we don’t see a thing,” said Bart Dunlap, a graduate student at the University of North Carolina at Chapel Hill and one of the team members. “If there’s a white dwarf there, and there almost certainly is, it must be extremely cold.”

The researchers calculated that the white dwarf would be no more than a comparatively cool 3,000 degrees Kelvin (2,700 degrees Celsius). Our Sun at its center is about 5,000 times hotter.

Astronomers believe that such a cool, collapsed star would be largely crystallized carbon, not unlike a diamond. Other such stars have been identified and they are theoretically not that rare, but with a low intrinsic brightness, they can be deucedly difficult to detect. Its fortuitous location in a binary system with a neutron star enabled the team to identify this one.

A paper describing these results is published in the Astrophysical Journal.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Contacts:

Charles Blue, Public Information Officer
National Radio Astronomy Observatory
+1 434-296-0314; cblue@nrao.edu

Dr. Katy Garmany, Deputy Press Officer
National Optical Astronomy Observatory
+1 520-318-8526; kgarmany@noao.edu

David Kaplan
Asst. Professor
Dept. of Physics, UW-Milwaukee
+1-414-229-4971; kaplan@uwm.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Charles Blue | Eurek Alert!
Further information:
https://public.nrao.edu/news/pressreleases/cold-white-dwarf

Further reports about: Astronomy Astrophysical Observatory White binary system dwarf neutron star spinning waves white dwarfs

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>