Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio Waves 'See' through Walls

13.10.2009
University of Utah engineers showed that a wireless network of radio transmitters can track people moving behind solid walls. The system could help police, firefighters and others nab intruders, and rescue hostages, fire victims and elderly people who fall in their homes. It also might help retail marketing and border control.

"By showing the locations of people within a building during hostage situations, fires or other emergencies, radio tomography can help law enforcement and emergency responders to know where they should focus their attention,” Joey Wilson and Neal Patwari wrote in one of two new studies of the method.

Both researchers are in the university’s Department of Electrical and Computer Engineering – Patwari as an assistant professor and Wilson as a doctoral student.

Their method uses radio tomographic imaging (RTI), which can “see,” locate and track moving people or objects in an area surrounded by inexpensive radio transceivers that send and receive signals. People don’t need to wear radio-transmitting ID tags.

One of the studies – which outlines the method and tests it in an indoor atrium and a grassy area with trees – is awaiting publication soon in IEEE Transactions on Mobile Computing, a journal of the Institute of Electrical and Electronics Engineers.

The study involved placing a wireless network of 28 inexpensive radio transceivers – called nodes – around a square-shaped portion of the atrium and a similar part of the lawn. In the atrium, each side of the square was almost 14 feet long and had eight nodes spaced 2 feet apart. On the lawn, the square was about 21 feet on each side and nodes were 3 feet apart. The transceivers were placed on 4-foot-tall stands made of plastic pipe so they would make measurements at human torso level.

Radio signal strengths between all nodes were measured as a person walked in each area. Processed radio signal strength data were displayed on a computer screen, producing a bird’s-eye-view, blob-like image of the person.

A second study detailed a test of an improved method that allows “tracking through walls.” That study has been placed on arXiv.org, an online archive for preprints of scientific papers. The study details how variations in radio signal strength within a wireless network of 34 nodes allowed tracking of moving people behind a brick wall.

The method was tested around an addition to Patwari’s Salt Lake City home. Variations in radio waves were measured as Wilson walked around inside. The system successfully tracked Wilson’s location to within 3 feet.

The wireless system used in the experiments was not a Wi-Fi network like those that link home computers, printers and other devices. Patwari says the system is known as a Zigbee network – the kind of network often used by wireless home thermostats and other home or factory automation.

Wilson demonstrated radio tomographic imaging during a mobile communication conference last year, and won the MobiCom 2008 Student Research Demo Competition. The researchers now have a patent pending on the method.

“I have aspirations to commercialize this,” says Wilson, who has founded a spinoff company named Xandem Technology LLC in Salt Lake City.

The research was funded by the National Science Foundation.

How It Works

Radio tomographic imaging (RTI) is different and much less expensive than radar, in which radar or radio signals are bounced off targets and the returning echoes or reflections provide the target’s location and speed. RTI instead measures “shadows” in radio waves created when they pass through a moving person or object.

RTI measures radio signal strengths on numerous paths as the radio waves pass through a person or other target. In that sense, it is quite similar to medical CT (computerized tomographic) scanning, which uses X-rays to make pictures of the human body, and seismic imaging, in which waves from earthquakes or explosions are used to look for oil, minerals and rock structures underground. In each method, measurements of the radio waves, X-rays or seismic waves are made along many different paths through the target, and those measurements are used to construct a computer image.

In their indoor, outdoor and through-the-wall experiments, Wilson and Patwari obtained radio signal strength measurements from all the transceivers – first when the rectangle was empty and then when a person walked through it. They developed math formulas and used them in a computer program to convert weaker or “attenuated” signals – which occur when someone creates “shadows” by walking through the radio signals – into a blob-like, bird’s-eye-view image of that person walking.

RTI has advantages. “RF [radio frequency] signals can travel through obstructions such as walls, trees and smoke, while optical and infrared imaging systems cannot,” the engineers wrote. “RF imaging will also work in the dark, where video cameras will fail.”

Even “where video cameras could work, privacy concerns may prevent their deployment,” Wilson and Patwari wrote. “An RTI system provides current images of the location of people and their movements, but cannot be used to identify a person.”

Would bombardment by radio waves pose a hazard? Wilson says the devices “transmit radio waves at powers 500 times less than a typical cell phone.”

“And you don’t hold it against your head,” Patwari adds.

Radio ‘Eyes’ to the Rescue

Patwari says the system still needs improvements, “but the plan is that when there is a hostage situation, for example, or some kind of event that makes it dangerous for police or firefighters to enter a building, then instead of entering the building first, they would throw dozens of these radios around the building and immediately they would be able to see a computer image showing where people are moving inside the building.”

“They are reusable and you can pick them up afterwards,” he says.

The technique cannot distinguish good guys from bad guys, but at least will tell emergency personnel where people are located, he adds.

Patwari says radio tomography probably can be improved to detect people in a burning building, but also would “see” moving flames. “You may be able to look at the image and say this is a spreading fire and these are people,” says Patwari.

Wilson believes radio imaging also could be used in “a smarter alarm system. … What if you put radios in your home [built into walls or plugged into outlets] and used tomography to locate people in your home. Not only would your security system be triggered by an intrusion, but you could track the intruder online or over your phone.”

Radio tomography even might be used to study where people spend time in stores.

“Does a certain marketing display get people to stop or does it not?” Wilson asks. “I’m thinking of retail stores or grocery stores. They spend a lot of money to determine, ‘Where should we put the cereal, where should we put the milk, where should we put the bread?’ If I can offer that information using radio tomographic imaging, it’s a big deal.”

Radio image tracking might help some elderly people live at home. “The elderly want to stay in their homes but don’t want a camera in their face all day,” Wilson says. “With radio tomographic imaging, you could track where they are in their home, did they get up at the right time, did they go to the medicine cabinet, have they not moved today?”

Wilson says a computer monitoring the radio images might detect an elderly person falling down the stairs based on the unusually fast movement.

He says radio tracking also might be a relatively inexpensive method of border security, and would work in dark and fog unlike cameras.

Another possible use: automatic control of lighting, heating and air conditioning in buildings, says Wilson. Radio tracking might even control sound systems so that the best sound is aimed where people are located, as well as noise cancellation systems which could be aimed automatically at noise sources, Patwari says.

Videos demonstrating use of radio tomographic imaging may be viewed at:
http://span.ece.utah.edu/radio-tomographic-imaging
Contacts:
-- Neal Patwari, assistant professor of electrical and computer engineering – office (801) 581-5917, cellular (801) 556-0313, npatwari@ece.utah.edu

-- Joey Wilson, Ph.D. student in electrical and computer engineering – cellular (801) 413-7509, joey@xandem.com

Lee Siegel | Newswise Science News
Further information:
http://span.ece.utah.edu/radio-tomographic-imaging
http://www.utah.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>