Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio Waves 'See' through Walls

13.10.2009
University of Utah engineers showed that a wireless network of radio transmitters can track people moving behind solid walls. The system could help police, firefighters and others nab intruders, and rescue hostages, fire victims and elderly people who fall in their homes. It also might help retail marketing and border control.

"By showing the locations of people within a building during hostage situations, fires or other emergencies, radio tomography can help law enforcement and emergency responders to know where they should focus their attention,” Joey Wilson and Neal Patwari wrote in one of two new studies of the method.

Both researchers are in the university’s Department of Electrical and Computer Engineering – Patwari as an assistant professor and Wilson as a doctoral student.

Their method uses radio tomographic imaging (RTI), which can “see,” locate and track moving people or objects in an area surrounded by inexpensive radio transceivers that send and receive signals. People don’t need to wear radio-transmitting ID tags.

One of the studies – which outlines the method and tests it in an indoor atrium and a grassy area with trees – is awaiting publication soon in IEEE Transactions on Mobile Computing, a journal of the Institute of Electrical and Electronics Engineers.

The study involved placing a wireless network of 28 inexpensive radio transceivers – called nodes – around a square-shaped portion of the atrium and a similar part of the lawn. In the atrium, each side of the square was almost 14 feet long and had eight nodes spaced 2 feet apart. On the lawn, the square was about 21 feet on each side and nodes were 3 feet apart. The transceivers were placed on 4-foot-tall stands made of plastic pipe so they would make measurements at human torso level.

Radio signal strengths between all nodes were measured as a person walked in each area. Processed radio signal strength data were displayed on a computer screen, producing a bird’s-eye-view, blob-like image of the person.

A second study detailed a test of an improved method that allows “tracking through walls.” That study has been placed on arXiv.org, an online archive for preprints of scientific papers. The study details how variations in radio signal strength within a wireless network of 34 nodes allowed tracking of moving people behind a brick wall.

The method was tested around an addition to Patwari’s Salt Lake City home. Variations in radio waves were measured as Wilson walked around inside. The system successfully tracked Wilson’s location to within 3 feet.

The wireless system used in the experiments was not a Wi-Fi network like those that link home computers, printers and other devices. Patwari says the system is known as a Zigbee network – the kind of network often used by wireless home thermostats and other home or factory automation.

Wilson demonstrated radio tomographic imaging during a mobile communication conference last year, and won the MobiCom 2008 Student Research Demo Competition. The researchers now have a patent pending on the method.

“I have aspirations to commercialize this,” says Wilson, who has founded a spinoff company named Xandem Technology LLC in Salt Lake City.

The research was funded by the National Science Foundation.

How It Works

Radio tomographic imaging (RTI) is different and much less expensive than radar, in which radar or radio signals are bounced off targets and the returning echoes or reflections provide the target’s location and speed. RTI instead measures “shadows” in radio waves created when they pass through a moving person or object.

RTI measures radio signal strengths on numerous paths as the radio waves pass through a person or other target. In that sense, it is quite similar to medical CT (computerized tomographic) scanning, which uses X-rays to make pictures of the human body, and seismic imaging, in which waves from earthquakes or explosions are used to look for oil, minerals and rock structures underground. In each method, measurements of the radio waves, X-rays or seismic waves are made along many different paths through the target, and those measurements are used to construct a computer image.

In their indoor, outdoor and through-the-wall experiments, Wilson and Patwari obtained radio signal strength measurements from all the transceivers – first when the rectangle was empty and then when a person walked through it. They developed math formulas and used them in a computer program to convert weaker or “attenuated” signals – which occur when someone creates “shadows” by walking through the radio signals – into a blob-like, bird’s-eye-view image of that person walking.

RTI has advantages. “RF [radio frequency] signals can travel through obstructions such as walls, trees and smoke, while optical and infrared imaging systems cannot,” the engineers wrote. “RF imaging will also work in the dark, where video cameras will fail.”

Even “where video cameras could work, privacy concerns may prevent their deployment,” Wilson and Patwari wrote. “An RTI system provides current images of the location of people and their movements, but cannot be used to identify a person.”

Would bombardment by radio waves pose a hazard? Wilson says the devices “transmit radio waves at powers 500 times less than a typical cell phone.”

“And you don’t hold it against your head,” Patwari adds.

Radio ‘Eyes’ to the Rescue

Patwari says the system still needs improvements, “but the plan is that when there is a hostage situation, for example, or some kind of event that makes it dangerous for police or firefighters to enter a building, then instead of entering the building first, they would throw dozens of these radios around the building and immediately they would be able to see a computer image showing where people are moving inside the building.”

“They are reusable and you can pick them up afterwards,” he says.

The technique cannot distinguish good guys from bad guys, but at least will tell emergency personnel where people are located, he adds.

Patwari says radio tomography probably can be improved to detect people in a burning building, but also would “see” moving flames. “You may be able to look at the image and say this is a spreading fire and these are people,” says Patwari.

Wilson believes radio imaging also could be used in “a smarter alarm system. … What if you put radios in your home [built into walls or plugged into outlets] and used tomography to locate people in your home. Not only would your security system be triggered by an intrusion, but you could track the intruder online or over your phone.”

Radio tomography even might be used to study where people spend time in stores.

“Does a certain marketing display get people to stop or does it not?” Wilson asks. “I’m thinking of retail stores or grocery stores. They spend a lot of money to determine, ‘Where should we put the cereal, where should we put the milk, where should we put the bread?’ If I can offer that information using radio tomographic imaging, it’s a big deal.”

Radio image tracking might help some elderly people live at home. “The elderly want to stay in their homes but don’t want a camera in their face all day,” Wilson says. “With radio tomographic imaging, you could track where they are in their home, did they get up at the right time, did they go to the medicine cabinet, have they not moved today?”

Wilson says a computer monitoring the radio images might detect an elderly person falling down the stairs based on the unusually fast movement.

He says radio tracking also might be a relatively inexpensive method of border security, and would work in dark and fog unlike cameras.

Another possible use: automatic control of lighting, heating and air conditioning in buildings, says Wilson. Radio tracking might even control sound systems so that the best sound is aimed where people are located, as well as noise cancellation systems which could be aimed automatically at noise sources, Patwari says.

Videos demonstrating use of radio tomographic imaging may be viewed at:
http://span.ece.utah.edu/radio-tomographic-imaging
Contacts:
-- Neal Patwari, assistant professor of electrical and computer engineering – office (801) 581-5917, cellular (801) 556-0313, npatwari@ece.utah.edu

-- Joey Wilson, Ph.D. student in electrical and computer engineering – cellular (801) 413-7509, joey@xandem.com

Lee Siegel | Newswise Science News
Further information:
http://span.ece.utah.edu/radio-tomographic-imaging
http://www.utah.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>