Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio-burst discovery deepens astrophysics mystery

10.07.2014

The discovery of a split-second burst of radio waves using the Arecibo radio telescope in Puerto Rico provides important new evidence of mysterious pulses that appear to come from deep in outer space.

The findings by an international team of astronomers led by Laura Spitler from the Max Planck Institute for Radio Astronomy in Bonn, Germany are published on July 10 in the online issue of The Astrophysical Journal. They mark the first time that a so-called “fast radio burst” has been detected in the Northern hemisphere of the sky.


Arecibo 305 m radio telescope, located in a natural valley in Puerto Rico.

Credit: National Astronomy and Ionosphere Center (NAIC)


Optical sky image of the area in the constellation Auriga where the fast radio burst FRB 121102 (marked with a green circle) has been detected.

Image Credit: Rogelio Bernal Andreo (DeepSkyColors.com)

Fast radio bursts (FRBs) are bright flashes of radio waves that last only a few thousandths of a second. Scientists using the Parkes Observatory in Australia have recorded such events for the first time, but the lack of any similar findings by other facilities led to speculation that the Australian instrument might have been picking up signals originating from sources on or near Earth.

The discovery at Arecibo is the first detection of a fast radio burst using an instrument other than the Parkes radio telescope. The position of the radio burst is in the direction of the constellation Auriga in the Northern sky.

"There are only seven bursts every minute somewhere in the sky on average, so you have to be pretty lucky to have your telescope pointed in the right place at the right time", says Laura Spitler from Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, the lead author of the paper. "The characteristics of the burst seen by the Arecibo telescope, as well as how often we expect to catch one, are consistent with the characteristics of the previously observed bursts from Parkes."

“Our result is important because it eliminates any doubt that these radio bursts are truly of cosmic origin,” continues Victoria Kaspi, an astrophysics professor at McGill University in Montreal and Principal Investigator for the pulsar-survey project that detected this fast radio burst. “The radio waves show every sign of having come from far outside our galaxy – a really exciting prospect.”

Exactly what may be causing such radio bursts represents a major new enigma for astrophysicists. Possibilities include a range of exotic astrophysical objects, such as evaporating black holes, mergers of neutron stars, or flares from magnetars -- a type of neutron star with extremely powerful magnetic fields.

“Another possibility is that they are bursts much brighter than the giant pulses seen from some pulsars,” notes James Cordes, a professor of astronomy at Cornell University and co-author of the new study.

The unusual pulse was detected on November 02, 2012, at the Arecibo Observatory with the world’s largest and most sensitive single-dish radio telescope, with a radio-mirror spanning 305 metres and covering about 20 acres.

While fast radio bursts last just a few thousandths of a second and have rarely been detected, the new result confirms previous estimates that these strange cosmic bursts occur roughly 10,000 times a day over the whole sky. This astonishingly large number is inferred by calculating how much sky was observed, and for how long, in order to make the few detections that have so far been reported.

The bursts appear to be coming from beyond the Milky Way galaxy based on measurements of an effect known as plasma dispersion. Pulses that travel through the cosmos are distinguished from man-made interference by the effect of interstellar electrons, which cause radio waves to travel more slowly at lower radio frequencies. The burst detected by the Arecibo telescope has three times the maximum dispersion measurement that would be expected from a source within the galaxy, the scientists report.

The discovery was made as part of the Pulsar Arecibo L-Band Feed Array (PALFA) survey, which aims to find a large sample of pulsars and to discover rare objects useful for probing fundamental aspects of neutron star physics and testing theories of gravitational physics.

Searching for fast radio bursts has become a priority for current and future radio observatories. "The Effelsberg radio telescope has great potential for detecting many of these bursts," concludes Laura Spitler. "We are sure that there are bursts to be found in archival data from from radio pulsar surveys at Effelsberg, and currently we are working hard to implement a system that will detect bursts in real time.

Real-time detection is an important step forward as it enables follow-up observations with facilities at other observing bands, which is crucial to understanding this mystery." Future instruments, such as the Square Kilometre Array and its pathfinders, promise to be efficient FRB detectors that will vastly expand the knowledge of that phenomenon. 


Background Information

The research was supported by grants from the European Research Council, the National Science Foundation, the Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche du Québec - Nature et technologies, and the Canadian Institute for Advanced Research, among others.

The Arecibo Observatory is operated by SRI International in alliance with Ana G. Méndez-Universidad Metropolitana and the Universities Space Research Association, under a cooperative agreement with the National Science Foundation (AST-1100968).

The data were processed on the ATLAS cluster of the Max Planck Institute for Gravitational Physics/Albert Einstein Institute, Hannover, Germany.

Original Paper:

Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey,” by L.G. Spitler, J.M. Cordes, et al. Astrophysical Journal. July 10, 2014.
http://de.arxiv.org/abs/1404.2934

Local Contact:

Dr. Laura Spitler,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-108
E-mail: lspitler@mpifr-bonn.mpg.de

Dr. Paulo Freire,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-496
E-mail: pfreire@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2014/8

Norbert Junkes | Max-Planck-Institut

Further reports about: Arecibo Array Astronomy Max-Planck-Institut Observatory Radioastronomie astrophysics pulsars waves

More articles from Physics and Astronomy:

nachricht Scientists take nanoparticle snapshots
11.02.2016 | DOE/Argonne National Laboratory

nachricht New paths for generation of ultracold molecules
11.02.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>