Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio-burst discovery deepens astrophysics mystery

10.07.2014

The discovery of a split-second burst of radio waves using the Arecibo radio telescope in Puerto Rico provides important new evidence of mysterious pulses that appear to come from deep in outer space.

The findings by an international team of astronomers led by Laura Spitler from the Max Planck Institute for Radio Astronomy in Bonn, Germany are published on July 10 in the online issue of The Astrophysical Journal. They mark the first time that a so-called “fast radio burst” has been detected in the Northern hemisphere of the sky.


Arecibo 305 m radio telescope, located in a natural valley in Puerto Rico.

Credit: National Astronomy and Ionosphere Center (NAIC)


Optical sky image of the area in the constellation Auriga where the fast radio burst FRB 121102 (marked with a green circle) has been detected.

Image Credit: Rogelio Bernal Andreo (DeepSkyColors.com)

Fast radio bursts (FRBs) are bright flashes of radio waves that last only a few thousandths of a second. Scientists using the Parkes Observatory in Australia have recorded such events for the first time, but the lack of any similar findings by other facilities led to speculation that the Australian instrument might have been picking up signals originating from sources on or near Earth.

The discovery at Arecibo is the first detection of a fast radio burst using an instrument other than the Parkes radio telescope. The position of the radio burst is in the direction of the constellation Auriga in the Northern sky.

"There are only seven bursts every minute somewhere in the sky on average, so you have to be pretty lucky to have your telescope pointed in the right place at the right time", says Laura Spitler from Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, the lead author of the paper. "The characteristics of the burst seen by the Arecibo telescope, as well as how often we expect to catch one, are consistent with the characteristics of the previously observed bursts from Parkes."

“Our result is important because it eliminates any doubt that these radio bursts are truly of cosmic origin,” continues Victoria Kaspi, an astrophysics professor at McGill University in Montreal and Principal Investigator for the pulsar-survey project that detected this fast radio burst. “The radio waves show every sign of having come from far outside our galaxy – a really exciting prospect.”

Exactly what may be causing such radio bursts represents a major new enigma for astrophysicists. Possibilities include a range of exotic astrophysical objects, such as evaporating black holes, mergers of neutron stars, or flares from magnetars -- a type of neutron star with extremely powerful magnetic fields.

“Another possibility is that they are bursts much brighter than the giant pulses seen from some pulsars,” notes James Cordes, a professor of astronomy at Cornell University and co-author of the new study.

The unusual pulse was detected on November 02, 2012, at the Arecibo Observatory with the world’s largest and most sensitive single-dish radio telescope, with a radio-mirror spanning 305 metres and covering about 20 acres.

While fast radio bursts last just a few thousandths of a second and have rarely been detected, the new result confirms previous estimates that these strange cosmic bursts occur roughly 10,000 times a day over the whole sky. This astonishingly large number is inferred by calculating how much sky was observed, and for how long, in order to make the few detections that have so far been reported.

The bursts appear to be coming from beyond the Milky Way galaxy based on measurements of an effect known as plasma dispersion. Pulses that travel through the cosmos are distinguished from man-made interference by the effect of interstellar electrons, which cause radio waves to travel more slowly at lower radio frequencies. The burst detected by the Arecibo telescope has three times the maximum dispersion measurement that would be expected from a source within the galaxy, the scientists report.

The discovery was made as part of the Pulsar Arecibo L-Band Feed Array (PALFA) survey, which aims to find a large sample of pulsars and to discover rare objects useful for probing fundamental aspects of neutron star physics and testing theories of gravitational physics.

Searching for fast radio bursts has become a priority for current and future radio observatories. "The Effelsberg radio telescope has great potential for detecting many of these bursts," concludes Laura Spitler. "We are sure that there are bursts to be found in archival data from from radio pulsar surveys at Effelsberg, and currently we are working hard to implement a system that will detect bursts in real time.

Real-time detection is an important step forward as it enables follow-up observations with facilities at other observing bands, which is crucial to understanding this mystery." Future instruments, such as the Square Kilometre Array and its pathfinders, promise to be efficient FRB detectors that will vastly expand the knowledge of that phenomenon. 


Background Information

The research was supported by grants from the European Research Council, the National Science Foundation, the Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche du Québec - Nature et technologies, and the Canadian Institute for Advanced Research, among others.

The Arecibo Observatory is operated by SRI International in alliance with Ana G. Méndez-Universidad Metropolitana and the Universities Space Research Association, under a cooperative agreement with the National Science Foundation (AST-1100968).

The data were processed on the ATLAS cluster of the Max Planck Institute for Gravitational Physics/Albert Einstein Institute, Hannover, Germany.

Original Paper:

Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey,” by L.G. Spitler, J.M. Cordes, et al. Astrophysical Journal. July 10, 2014.
http://de.arxiv.org/abs/1404.2934

Local Contact:

Dr. Laura Spitler,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-108
E-mail: lspitler@mpifr-bonn.mpg.de

Dr. Paulo Freire,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-496
E-mail: pfreire@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2014/8

Norbert Junkes | Max-Planck-Institut

Further reports about: Arecibo Array Astronomy Max-Planck-Institut Observatory Radioastronomie astrophysics pulsars waves

More articles from Physics and Astronomy:

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>