Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"On-the-fly" spectroscopy with a diode laser and a frequency comb

01.09.2009
MPQ scientists achieve high precision optical broadband spectroscopy by applying frequency comb technique to tunable diode lasers.

The research field of optical spectroscopy has already attracted attention of generations of scientists, starting with Fraunhofer's discovery of dark lines in the sun spectrum in 1814 followed by the work of Kirchhoff and Bunsen in 1859 explaining these lines as absorption of light in atoms and molecules.


Light confinement in microcavities: Quartz glass microresonators on a silicon chip allow to store light for long times corresponding to more than 1 million round trips of photons within the resonator. Depending on its wavelengths (color), the light is confined closer to the rim or more inside the resonator, respectively.

Within the last decade, the invention of optical frequency combs has revolutionized the field of spectroscopy and enabled measurements with previously unattainable precision. Now, MPQ scientists (from the "Laboratory of Photonics & Quantum Measurements" lead by EPFL tenure track professor T.J. Kippenberg) developed a novel measurement scheme for broadband and fast measurements of optical spectra utilizing the accuracy of an optical frequency comb and transferring it to an easy-to-use tunable diode laser. (Nature Photonics, AOP, August 2009, DOI:10.1038/nphoton.2009.138)

These tunable diode lasers can be swept in frequency (i.e. the "color" of the laser can be changed) to measure the spectral response of anything of interest, for example light absorption in gases but also the response of photonic elements in the growing field of nano-photonics. However, sweeping the frequency of a tunable diode laser alone does not allow for precise spectroscopic measurements, unless the instantaneous frequency of the diode laser at a certain time is known precisely.

Here, the new measurement scheme comes into play, enabling an "on-the-fly" calibration of the sweeping diode laser using an optical fiber laser based frequency comb. The achieved precision of the spectroscopic measurement is better than 1 MHz (note that the frequency of the laser light is around 200 THz, corresponding to a relative accuracy of 5x10 to the -9).

As a first application, the newly developed spectroscopy scheme has been used by MPQ scientists Pascal Del'Haye and Dr. Arcizet to obtain absorption spectra of on-chip monolithic optical microresonators made of fused silica (so called microtoroids). These measurements allowed for the first time to analyze dispersion properties of these devices (conventional spectroscopy methods had so far failed due to the extremely narrow (sub-MHz) absorption lines of the microresonators). Numerical simulations as well as the experimental results show that the mode structure of microtoroids is extremely uniform, i.e. the optical modes that are supported by the device are nearly spaced equidistant. This surprising result is a consequence of the spatial shape of the optical modes within the resonator (leading to "red" modes at low frequencies being more confined inside the resonator than "blue" modes at high frequencies) that is partly compensated by a different material dispersion for different light frequencies (here, the "red" modes are travelling slower, i.e. the resonator seems to be larger for the "red" modes). "The small total dispersion of microtoroids makes them a well suited device for applications in microphotonics as well as for frequency comb generation via nonlinear optical
frequency conversion", states Prof. Tobias Kippenberg.
A patent of the new technique has been filed together with Max Planck Innovation. [PD] / Olivia Meyer-Streng
Original Publication:
P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth & T. J. Kippenberg
Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion

Nature Photonics, Advance Online Publication, August 2009, DOI:10.1038/nphoton.2009.138

Nature Photonics "News and Views", T. Schibli, Colorado University, USA
Optical spectroscopy: Clever calibration, doi:10.1038/nphoton.2009.150
Contact:
Prof. Dr. Tobias Kippenberg
Ecole Polytechnique Fédérale de Lausanne, CH1015, Switzerland and
Max Planck Institute of Quantum Optics, 85748 Garching, Germany
Phone: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
e-mail: tobias.kippenberg@mpq.mpg.de
Pascal Del'Haye
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 284
Fax: +49 - 89 / 32905 200
e-mail: pascal.delhaye@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press & Public Relations
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de/k-lab/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>