Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum paradox directly observed -- a milestone in quantum mechanics

05.03.2009
In quantum mechanics, a vanguard of physics where science often merges into philosophy, much of our understanding is based on conjecture and probabilities, but a group of researchers in Japan has moved one of the fundamental paradoxes in quantum mechanics into the lab for experimentation and observed some of the 'spooky action of quantum mechanics' directly.

Hardy's Paradox, the axiom that we cannot make inferences about past events that haven't been directly observed while also acknowledging that the very act of observation affects the reality we seek to unearth, poses a conundrum that quantum physicists have sought to overcome for decades. How do you observe quantum mechanics, atomic and sub-atomic systems that are so small-scale they cannot be described in classical terms, when the act of looking at them changes them permanently?

In a journal paper published in the New Journal of Physics, 'Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair', today, Wednesday, 4 March, authored by Kazuhiro Yokota, Takashi Yamamoto, Masato Koashi and Nobuyuki Imoto from the Graduate School of Engineering Science at Osaka University and the CREST Photonic Quantum Information Project in Kawaguchi City, the research group explains how they used a measurement technique that has an almost imperceptible impact on the experiment which allows the researchers to compile objectively provable results at sub-atomic scales.

The experiment, based on Lucien Hardy's thought experiment, which follows the paths of two photons using interferometers, instruments that can be used to interfere photons together, is believed to throw up contradictory results that do not conform to our classical understanding of reality. Although Hardy's Paradox is rarely refuted, it was only a thought experiment until recently.

Using an entangled pair of photons and an original but complicated method of weak measurement that does not interfere with the path of the photons, a significant step towards harnessing the reality of quantum mechanics has been taken by these researchers in Japan.

As the researchers write, "Unlike Hardy's original argument, our demonstration reveals the paradox by observation, rather than inference. We believe the demonstrated joint weak measurement is useful not only for exploiting fundamental quantum physics, but also for various applications such as quantum metrology and quantum information technology."

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>