Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Dots Go With the Flow

25.05.2010
Quantum dots may be small. But they usually don’t let anyone push them around. Now, however, JQI Fellow Edo Waks and colleagues have devised a self-adjusting remote-control system that can place a dot 6 nanometers long to within 45 nm of any desired location. That’s the equivalent of picking up golf balls around a living room and putting them on a coffee table – automatically, from 100 miles away.

QDs can be moved with “optical tweezers” – a system that sets up a gradient of forces from multiple laser beams – or by electrophoresis, in which a microscopic object with a surface charge can be pushed through a fluid or gel by applying a constant electric field. (Electrophoresis provided an early method of separating DNA for analysis.) To date, however, results from both methods have been insufficiently exact for anticipated applications, and typically move multiple particles at once.

But now a research team headed by Waks and Benjamin Shapiro of UMD’s Fischell Department of Bio-Engineering has invented a fully automated apparatus that controls the position of a single QD by manipulating the fluid in which the dots are immersed. The system exploits a phenomenon called electroosmosis, in which liquids with polar molecules such as water are pulled in specific directions by applied electrical fields.

At the ends of each channel are cylindrical fluid reservoirs, each of which contains a platinum electrode. By altering the voltage between pairs of electrodes, the scientists control the motion of the fluid in two dimensions.

To position a dot, the researchers first identify a single QD with a microscope. This is possible because when a dot is struck by a green laser beam (532 nm), it begins to blink, emitting red photons at 655 nm. The blinking light is detected and the individual dot’s motion is tracked by a microscope. When the dot goes “dark,” the tracking pauses until the next blink. When the QD blinks, its position relative to the target location is re-detected.

The researchers programmed their device to calculate how much voltage will be required to shove the dot by the right amount in the desired direction. At each blink, an appropriate voltage is applied to the electrodes. [See diagram at bottom.] The QD thus proceeds to its intended destination by a series of nudges. Once there, the system can keep it in place for more than an hour.

One potential problem the group faced is that the dots not only move in two dimensions, but also rise and fall within the fluid. As a result, the imaging microscope loses its sharp focus and the dot can be lost. The scientists compensated for this effect by programming their microscope to detect the onset of fuzziness in the image and automatically adjust its distance to the dot accordingly.

The microfluidic array, including reservoirs and electrodes, is about the size of a postage stamp. It fits easily atop a microscope slide which is placed on a small platform with a circular hole in the middle.

The microscope is located beneath the slide, and refocuses using a piezoelectric transducer – a device that allows extremely small displacements of special materials when exposed to electric potential. The microscope image is routed to a digitalcamera that records 20 frames per second. The entire system operates at room temperature and pressure.

Using the device, the scientists were able to move a single dot very accurately along a planned trajectory at an average rate of about two micrometers per second, pausing at intervals between blinks.

This “ability to individually select, characterize and position single nanoscopic objects with nanometer precision,” the team writes, “could enable integration of single quantum dots, or other visualizable nanoscale objects, with photonic structures and enable the development of novel nanophotonic devices and sensors.”

Curt Suplee | Newswise Science News
Further information:
http://www.umd.edu

Further reports about: Dots Flow Structure Quantum laser beam optical tweezer quantum dot

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>