Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Dots Go With the Flow

25.05.2010
Quantum dots may be small. But they usually don’t let anyone push them around. Now, however, JQI Fellow Edo Waks and colleagues have devised a self-adjusting remote-control system that can place a dot 6 nanometers long to within 45 nm of any desired location. That’s the equivalent of picking up golf balls around a living room and putting them on a coffee table – automatically, from 100 miles away.

QDs can be moved with “optical tweezers” – a system that sets up a gradient of forces from multiple laser beams – or by electrophoresis, in which a microscopic object with a surface charge can be pushed through a fluid or gel by applying a constant electric field. (Electrophoresis provided an early method of separating DNA for analysis.) To date, however, results from both methods have been insufficiently exact for anticipated applications, and typically move multiple particles at once.

But now a research team headed by Waks and Benjamin Shapiro of UMD’s Fischell Department of Bio-Engineering has invented a fully automated apparatus that controls the position of a single QD by manipulating the fluid in which the dots are immersed. The system exploits a phenomenon called electroosmosis, in which liquids with polar molecules such as water are pulled in specific directions by applied electrical fields.

At the ends of each channel are cylindrical fluid reservoirs, each of which contains a platinum electrode. By altering the voltage between pairs of electrodes, the scientists control the motion of the fluid in two dimensions.

To position a dot, the researchers first identify a single QD with a microscope. This is possible because when a dot is struck by a green laser beam (532 nm), it begins to blink, emitting red photons at 655 nm. The blinking light is detected and the individual dot’s motion is tracked by a microscope. When the dot goes “dark,” the tracking pauses until the next blink. When the QD blinks, its position relative to the target location is re-detected.

The researchers programmed their device to calculate how much voltage will be required to shove the dot by the right amount in the desired direction. At each blink, an appropriate voltage is applied to the electrodes. [See diagram at bottom.] The QD thus proceeds to its intended destination by a series of nudges. Once there, the system can keep it in place for more than an hour.

One potential problem the group faced is that the dots not only move in two dimensions, but also rise and fall within the fluid. As a result, the imaging microscope loses its sharp focus and the dot can be lost. The scientists compensated for this effect by programming their microscope to detect the onset of fuzziness in the image and automatically adjust its distance to the dot accordingly.

The microfluidic array, including reservoirs and electrodes, is about the size of a postage stamp. It fits easily atop a microscope slide which is placed on a small platform with a circular hole in the middle.

The microscope is located beneath the slide, and refocuses using a piezoelectric transducer – a device that allows extremely small displacements of special materials when exposed to electric potential. The microscope image is routed to a digitalcamera that records 20 frames per second. The entire system operates at room temperature and pressure.

Using the device, the scientists were able to move a single dot very accurately along a planned trajectory at an average rate of about two micrometers per second, pausing at intervals between blinks.

This “ability to individually select, characterize and position single nanoscopic objects with nanometer precision,” the team writes, “could enable integration of single quantum dots, or other visualizable nanoscale objects, with photonic structures and enable the development of novel nanophotonic devices and sensors.”

Curt Suplee | Newswise Science News
Further information:
http://www.umd.edu

Further reports about: Dots Flow Structure Quantum laser beam optical tweezer quantum dot

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>