Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum copies do new tricks

23.03.2012
One of the strange features of quantum information is that, unlike almost every other type of information, it cannot be perfectly copied.

For example, it is impossible to take a single photon and make a number of photons that are in the exact same quantum state. This may seem minor, but it's not. If perfect copying was possible, it would, among other things, be possible to send signals faster than the speed of light. This is forbidden by Einstein's theory of relativity.

For years, scientists have been experimenting with the idea of approximate quantum copying. A recent paper published in Physical Review Letters (PRL), by Sadegh Raeisi, Dr. Wolfgang Tittel and Dr. Christoph Simon of the Institute for Quantum Information Science at the University of Calgary takes another step in that research.

They showed that it is possible to perfectly recover the original from the imperfect quantum copies. They also proposed a way that his could be done in practice.

"Copying classical information is very important in our daily lives," says paper co-author Simon. "Think of the prevalence of photocopiers, faxes, scanners. It was quite surprising for physicists when they realized that the same thing is not possible for quantum systems, at least not perfectly. It is then important to study what exactly is possible and what isn't."

The research can be used in a variety of ways. First, it shows clearly that quantum information is preserved when copied. Even though the copies may be imperfect, the original quantum state can be recovered. In practical terms, it might lead to a precision measurement technique based on quantum physics for samples that have very low contrast, such as living cells.

The Institute for Quantum Information Science is a multidisciplinary group of researchers from the areas of computer science, mathematics and physics.

"At the fundamental level our world is governed not by classical physics, but by quantum physics," says Simon. "We are trying to understand the consequences of that for fundamental concepts such as information and trying to use this understanding to develop new kinds of quantum technology."

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>