Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proton size puzzle reinforced!

25.01.2013
International team of scientists confirms surprisingly small proton radius with laser spectroscopy of exotic hydrogen.

The initial results puzzled the world three years ago: the size of the proton (to be precise, its charge radius), measured in exotic hydrogen, in which the electron orbiting the nucleus is replaced by a negatively charged muon, yielded a value significantly smaller than the one from previous investigations of regular hydrogen or electron-proton-scattering.


Photo: Dr. Franz Kottmann, Dr. Randolf Pohl, and Dr. Daniel Covita (from left to right) in front of a superconducting magnet (5 Tesla) in which the experiment is set up: both the myon detectors and the hydrogen target are located inside the magnet. The strong magnetic field is necessary for collimating the muon beam down to a size as small as the diameter of a pencil.
© CREMA-collaboration, MPQ

A new measurement by the same team confirms the value of the electric charge radius and makes it possible for the first time to determine the magnetic radius of the proton via laser spectroscopy of muonic hydrogen (Science, January 25, 2013). The experiments were carried out at the Paul Scherrer Institut (PSI) (Villigen, Switzerland) which is the only research institute in the world providing the necessary amount of muons.

The international collaboration included the Max-Planck-Institute of Quantum Optics (MPQ) in Garching near Munich, the Swiss Federal Institute of Technology ETH Zurich (Switzerland), the University of Fribourg (Switzerland), the Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart, Dausinger & Giesen GmbH, Stuttgart, the Universities of Coimbra and Aveiro (Portugal), and the Laboratoire Kastler Brossel (LKB), Paris. The new results fuel the debate as to whether the discrepancies observed can be explained by standard physics, for example an incomplete understanding of the systematic errors that are inherent to all measurements, or whether they are due to new physics.

The hydrogen atom has played a key role in the investigation of the fundamental laws of physics. Its nucleus consists of a single positively charged proton orbited by a negatively charged electron, a model whose success dates from its proposed by Bohr in 1913. The energy levels of this simplest of atoms can be predicted with excellent precision from the theory of quantum electrodynamics.

However, the calculations have to take into account that – in contrast to the point-like electron – the proton is an extended object with a finite size, made of three quarks bound by so-call ‘gluons’. Therefore, the electric charge as well as the magnetism of the proton is distributed over a certain volume. The extended nature of the proton causes a shift of the energy levels in hydrogen. Hence the electric and the magnetic charge radii can be deduced from a measurement of the level shifts.

In 2010, the first results on the spectroscopic determination of the shift of the so-called 2S energy level in muonic hydrogen were published. The exotic atoms were generated by bombarding a target of regular hydrogen with muons from an accelerator at PSI. Muons behave a lot like electrons, except for their mass: muons are 200 times heavier than electrons. The atomic orbit of the muon is therefore much closer to the proton than the electron’s orbit in a regular hydrogen atom. This results in a much larger sensitivity of the muon’s energy level to the proton size and hence to a stronger shift of the energy levels. Measuring the level shifts is very technologically demanding: muonic hydrogen is very short-lived (muons decay after about two millionths of a second), so the light pulses for the excitation of the resonance have to be fired onto the hydrogen target only nanoseconds after the detection of a muon. The new disk laser technology developed by the Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart was an important element to fulfil this requirement. The lasers necessary for exciting the resonance were developed by the Max-Planck-Institute of Quantum Optics in cooperation with the Laboratoire Kastler Brossel (Paris). Coimbra, Aveiro and Fribourg universities were responsible for the development of the x-rays detectors.

In the experiment described in the newly published Science article, the energy shift was determined for another transition. This leads to a new measurement of the electric charge radius of the proton. Its value of 0.84087(39) femtometres (1 fm = 0.000 000 000 000 001 metre) is in good agreement with the one published in 2010, but 1.7 times as precise. The discrepancy with existing radius measurements made in regular hydrogen or by electron-proton-scattering, the so-called proton size puzzle, has thus been reaffirmed.

In addition, the new measurement allows a determination of the magnetic radius of the proton for the first time by laser spectroscopy of muonic hydrogen. This results in a value of 0.87(6) femtometres, in agreement with all previous measurements. Though the precision is, at present, of the same order as in other experiments, laser spectroscopy of muonic hydrogen has the potential of achieving a much better accuracy in the determination of the magnetic proton radius in the future.

Physicists around the world are actively seeking a solution to the proton size puzzle. Previous measurements in regular hydrogen and by electron-proton-scattering are being reanalyzed and even repeated. Theorists of various disciplines suggested ways to explain the discrepancy. Very interesting proposals explain the discrepancies by physics beyond the standard model. Other explanations suggest a proton structure of higher complexity than assumed today which only reveals itself under the influence of the heavy muon. New measurements are needed to check on these possibilities. Muon-proton-scattering experiments are being developed at PSI, new precision measurements at the electron accelerator in Mainz are being considered, and the PSI team plans to measure, for the first time ever, laser spectroscopy of the muonic helium atom in the course of this year. The required modifications of the current laser system are being investigated in the frame of the project “Thin-disk laser for muonic atoms spectroscopy” which (financed by the Swiss National Science Foundation (SNSF) and the Deutsche Forschungsgemeinschaft (DFG)) is carried out at the ETH Zürich (Prof. Dr. Klaus Kirch, Dr. Aldo Antognini) and at the IFSW (Prof. Dr. Thomas Graf, Dr. Andreas Voß). The Project “Muonic Helium” is also generously supported by the European Research Council (ERC) by an ERC Starting Grant held by Dr. Randolf Pohl from the MPQ in Garching.

Olivia Meyer-Streng

Original publication:
Aldo Antognini, François Nez, Karsten Schuhmann, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W. Hänsch, Paul Indelicato, Lucile Julien, Cheng-Yang Kao, Paul Knowles, Franz Kottmann, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Catherine Schwob, David Taqqu, João F. C. A. Veloso, Jan Vogelsang, Randolf Pohl
Proton structure from the measurement of 2S − 2P transition frequencies of muonic hydrogen

Science, January 25, 2013

The experiment was the collaborative success of many institutes from various countries: Max-Planck-Institute of Quantum Optics, Garching, Germany, Institute for Particle Physics, ETH Zurich, Switzerland, Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, and Université P. et M. Curie, Paris, France, Dausinger & Giesen GmbH, Stuttgart, Germany, Departamento de Física, Universidade de Coimbra, Portugal, Departamento de Física, Universidade de Aveiro, Portugal, Physics Department, Yale University, New Haven, USA, Institut für Strahlwerkzeuge, Universität Stuttgart, Germany, Physics Department, National Tsing Hua University, Hsinchu, Taiwan, Département de Physique, Université de Fribourg, Switzerland, Department of Chemistry, Princeton University, Princeton, USA, Paul Scherrer Institute, Villigen, Switzerland, Ludwig-MaximiliansUniversität, Munich, Germany

Contact:
Dr. Randolf Pohl
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 32905 -281
Fax: +49 (0)89 / 32905 -200
E-mail: randolf.pohl@mpq.mpg.de
http://www.mpq.mpg.de/~rnp/
Dr. Aldo Antognini
ETH Zürich
CH-8093 Zürich
Phone: +41 (0)56 310 4614
+41 (0)44 633 2031
E-mail: aldo@phys.ethz.ch
https://muhy.web.psi.ch/wiki/
Prof. Dr. Theodor W. Hänsch
Chair of Experimental Physics,
Ludwig-Maximilians-Universität, Munich
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1,
85748 Garching
Phone: +49 (0)89 / 32905 -702/712
Fax: +49 (0)89 / 32905 -312
E-mail: t.w.haensch@mpq.mpg.de
Prof. Dr. Thomas Graf
Universität Stuttgart
Institut für Strahlwerkzeuge
Pfaffenwaldring 43
D-70569 Stuttgart
Phone: +49 (0)711 68566840
E-mail: graf@ifsw.uni-stuttgart.de
Dr. Franz Kottmann
Paul Scherrer Institut
CH-5232 Villigen
Phone: +41 (0) 56 310 3502
E-mail: franz.kottmann@psi.ch
Karsten Schuhmann
ETH Zürich
CH-8093 Zürich
Phone: +41 (0)44 633 2031
E-mail: skarsten@phys.ethz.ch
and
Daunsinger & Giesen GmbH
Rotebühlstrasse 87
D-70178 Stuttgart

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Theory of the strong interaction verified
27.03.2015 | Forschungszentrum Juelich

nachricht Dark matter even darker than once thought
27.03.2015 | ESA/Hubble Information Centre

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>