Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proton size puzzle reinforced!

International team of scientists confirms surprisingly small proton radius with laser spectroscopy of exotic hydrogen.

The initial results puzzled the world three years ago: the size of the proton (to be precise, its charge radius), measured in exotic hydrogen, in which the electron orbiting the nucleus is replaced by a negatively charged muon, yielded a value significantly smaller than the one from previous investigations of regular hydrogen or electron-proton-scattering.

Photo: Dr. Franz Kottmann, Dr. Randolf Pohl, and Dr. Daniel Covita (from left to right) in front of a superconducting magnet (5 Tesla) in which the experiment is set up: both the myon detectors and the hydrogen target are located inside the magnet. The strong magnetic field is necessary for collimating the muon beam down to a size as small as the diameter of a pencil.
© CREMA-collaboration, MPQ

A new measurement by the same team confirms the value of the electric charge radius and makes it possible for the first time to determine the magnetic radius of the proton via laser spectroscopy of muonic hydrogen (Science, January 25, 2013). The experiments were carried out at the Paul Scherrer Institut (PSI) (Villigen, Switzerland) which is the only research institute in the world providing the necessary amount of muons.

The international collaboration included the Max-Planck-Institute of Quantum Optics (MPQ) in Garching near Munich, the Swiss Federal Institute of Technology ETH Zurich (Switzerland), the University of Fribourg (Switzerland), the Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart, Dausinger & Giesen GmbH, Stuttgart, the Universities of Coimbra and Aveiro (Portugal), and the Laboratoire Kastler Brossel (LKB), Paris. The new results fuel the debate as to whether the discrepancies observed can be explained by standard physics, for example an incomplete understanding of the systematic errors that are inherent to all measurements, or whether they are due to new physics.

The hydrogen atom has played a key role in the investigation of the fundamental laws of physics. Its nucleus consists of a single positively charged proton orbited by a negatively charged electron, a model whose success dates from its proposed by Bohr in 1913. The energy levels of this simplest of atoms can be predicted with excellent precision from the theory of quantum electrodynamics.

However, the calculations have to take into account that – in contrast to the point-like electron – the proton is an extended object with a finite size, made of three quarks bound by so-call ‘gluons’. Therefore, the electric charge as well as the magnetism of the proton is distributed over a certain volume. The extended nature of the proton causes a shift of the energy levels in hydrogen. Hence the electric and the magnetic charge radii can be deduced from a measurement of the level shifts.

In 2010, the first results on the spectroscopic determination of the shift of the so-called 2S energy level in muonic hydrogen were published. The exotic atoms were generated by bombarding a target of regular hydrogen with muons from an accelerator at PSI. Muons behave a lot like electrons, except for their mass: muons are 200 times heavier than electrons. The atomic orbit of the muon is therefore much closer to the proton than the electron’s orbit in a regular hydrogen atom. This results in a much larger sensitivity of the muon’s energy level to the proton size and hence to a stronger shift of the energy levels. Measuring the level shifts is very technologically demanding: muonic hydrogen is very short-lived (muons decay after about two millionths of a second), so the light pulses for the excitation of the resonance have to be fired onto the hydrogen target only nanoseconds after the detection of a muon. The new disk laser technology developed by the Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart was an important element to fulfil this requirement. The lasers necessary for exciting the resonance were developed by the Max-Planck-Institute of Quantum Optics in cooperation with the Laboratoire Kastler Brossel (Paris). Coimbra, Aveiro and Fribourg universities were responsible for the development of the x-rays detectors.

In the experiment described in the newly published Science article, the energy shift was determined for another transition. This leads to a new measurement of the electric charge radius of the proton. Its value of 0.84087(39) femtometres (1 fm = 0.000 000 000 000 001 metre) is in good agreement with the one published in 2010, but 1.7 times as precise. The discrepancy with existing radius measurements made in regular hydrogen or by electron-proton-scattering, the so-called proton size puzzle, has thus been reaffirmed.

In addition, the new measurement allows a determination of the magnetic radius of the proton for the first time by laser spectroscopy of muonic hydrogen. This results in a value of 0.87(6) femtometres, in agreement with all previous measurements. Though the precision is, at present, of the same order as in other experiments, laser spectroscopy of muonic hydrogen has the potential of achieving a much better accuracy in the determination of the magnetic proton radius in the future.

Physicists around the world are actively seeking a solution to the proton size puzzle. Previous measurements in regular hydrogen and by electron-proton-scattering are being reanalyzed and even repeated. Theorists of various disciplines suggested ways to explain the discrepancy. Very interesting proposals explain the discrepancies by physics beyond the standard model. Other explanations suggest a proton structure of higher complexity than assumed today which only reveals itself under the influence of the heavy muon. New measurements are needed to check on these possibilities. Muon-proton-scattering experiments are being developed at PSI, new precision measurements at the electron accelerator in Mainz are being considered, and the PSI team plans to measure, for the first time ever, laser spectroscopy of the muonic helium atom in the course of this year. The required modifications of the current laser system are being investigated in the frame of the project “Thin-disk laser for muonic atoms spectroscopy” which (financed by the Swiss National Science Foundation (SNSF) and the Deutsche Forschungsgemeinschaft (DFG)) is carried out at the ETH Zürich (Prof. Dr. Klaus Kirch, Dr. Aldo Antognini) and at the IFSW (Prof. Dr. Thomas Graf, Dr. Andreas Voß). The Project “Muonic Helium” is also generously supported by the European Research Council (ERC) by an ERC Starting Grant held by Dr. Randolf Pohl from the MPQ in Garching.

Olivia Meyer-Streng

Original publication:
Aldo Antognini, François Nez, Karsten Schuhmann, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W. Hänsch, Paul Indelicato, Lucile Julien, Cheng-Yang Kao, Paul Knowles, Franz Kottmann, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Catherine Schwob, David Taqqu, João F. C. A. Veloso, Jan Vogelsang, Randolf Pohl
Proton structure from the measurement of 2S − 2P transition frequencies of muonic hydrogen

Science, January 25, 2013

The experiment was the collaborative success of many institutes from various countries: Max-Planck-Institute of Quantum Optics, Garching, Germany, Institute for Particle Physics, ETH Zurich, Switzerland, Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, and Université P. et M. Curie, Paris, France, Dausinger & Giesen GmbH, Stuttgart, Germany, Departamento de Física, Universidade de Coimbra, Portugal, Departamento de Física, Universidade de Aveiro, Portugal, Physics Department, Yale University, New Haven, USA, Institut für Strahlwerkzeuge, Universität Stuttgart, Germany, Physics Department, National Tsing Hua University, Hsinchu, Taiwan, Département de Physique, Université de Fribourg, Switzerland, Department of Chemistry, Princeton University, Princeton, USA, Paul Scherrer Institute, Villigen, Switzerland, Ludwig-MaximiliansUniversität, Munich, Germany

Dr. Randolf Pohl
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 32905 -281
Fax: +49 (0)89 / 32905 -200
Dr. Aldo Antognini
ETH Zürich
CH-8093 Zürich
Phone: +41 (0)56 310 4614
+41 (0)44 633 2031
Prof. Dr. Theodor W. Hänsch
Chair of Experimental Physics,
Ludwig-Maximilians-Universität, Munich
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1,
85748 Garching
Phone: +49 (0)89 / 32905 -702/712
Fax: +49 (0)89 / 32905 -312
Prof. Dr. Thomas Graf
Universität Stuttgart
Institut für Strahlwerkzeuge
Pfaffenwaldring 43
D-70569 Stuttgart
Phone: +49 (0)711 68566840
Dr. Franz Kottmann
Paul Scherrer Institut
CH-5232 Villigen
Phone: +41 (0) 56 310 3502
Karsten Schuhmann
ETH Zürich
CH-8093 Zürich
Phone: +41 (0)44 633 2031
Daunsinger & Giesen GmbH
Rotebühlstrasse 87
D-70178 Stuttgart

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>



Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

More VideoLinks >>>