Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proton size puzzle reinforced!

25.01.2013
International team of scientists confirms surprisingly small proton radius with laser spectroscopy of exotic hydrogen.

The initial results puzzled the world three years ago: the size of the proton (to be precise, its charge radius), measured in exotic hydrogen, in which the electron orbiting the nucleus is replaced by a negatively charged muon, yielded a value significantly smaller than the one from previous investigations of regular hydrogen or electron-proton-scattering.


Photo: Dr. Franz Kottmann, Dr. Randolf Pohl, and Dr. Daniel Covita (from left to right) in front of a superconducting magnet (5 Tesla) in which the experiment is set up: both the myon detectors and the hydrogen target are located inside the magnet. The strong magnetic field is necessary for collimating the muon beam down to a size as small as the diameter of a pencil.
© CREMA-collaboration, MPQ

A new measurement by the same team confirms the value of the electric charge radius and makes it possible for the first time to determine the magnetic radius of the proton via laser spectroscopy of muonic hydrogen (Science, January 25, 2013). The experiments were carried out at the Paul Scherrer Institut (PSI) (Villigen, Switzerland) which is the only research institute in the world providing the necessary amount of muons.

The international collaboration included the Max-Planck-Institute of Quantum Optics (MPQ) in Garching near Munich, the Swiss Federal Institute of Technology ETH Zurich (Switzerland), the University of Fribourg (Switzerland), the Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart, Dausinger & Giesen GmbH, Stuttgart, the Universities of Coimbra and Aveiro (Portugal), and the Laboratoire Kastler Brossel (LKB), Paris. The new results fuel the debate as to whether the discrepancies observed can be explained by standard physics, for example an incomplete understanding of the systematic errors that are inherent to all measurements, or whether they are due to new physics.

The hydrogen atom has played a key role in the investigation of the fundamental laws of physics. Its nucleus consists of a single positively charged proton orbited by a negatively charged electron, a model whose success dates from its proposed by Bohr in 1913. The energy levels of this simplest of atoms can be predicted with excellent precision from the theory of quantum electrodynamics.

However, the calculations have to take into account that – in contrast to the point-like electron – the proton is an extended object with a finite size, made of three quarks bound by so-call ‘gluons’. Therefore, the electric charge as well as the magnetism of the proton is distributed over a certain volume. The extended nature of the proton causes a shift of the energy levels in hydrogen. Hence the electric and the magnetic charge radii can be deduced from a measurement of the level shifts.

In 2010, the first results on the spectroscopic determination of the shift of the so-called 2S energy level in muonic hydrogen were published. The exotic atoms were generated by bombarding a target of regular hydrogen with muons from an accelerator at PSI. Muons behave a lot like electrons, except for their mass: muons are 200 times heavier than electrons. The atomic orbit of the muon is therefore much closer to the proton than the electron’s orbit in a regular hydrogen atom. This results in a much larger sensitivity of the muon’s energy level to the proton size and hence to a stronger shift of the energy levels. Measuring the level shifts is very technologically demanding: muonic hydrogen is very short-lived (muons decay after about two millionths of a second), so the light pulses for the excitation of the resonance have to be fired onto the hydrogen target only nanoseconds after the detection of a muon. The new disk laser technology developed by the Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart was an important element to fulfil this requirement. The lasers necessary for exciting the resonance were developed by the Max-Planck-Institute of Quantum Optics in cooperation with the Laboratoire Kastler Brossel (Paris). Coimbra, Aveiro and Fribourg universities were responsible for the development of the x-rays detectors.

In the experiment described in the newly published Science article, the energy shift was determined for another transition. This leads to a new measurement of the electric charge radius of the proton. Its value of 0.84087(39) femtometres (1 fm = 0.000 000 000 000 001 metre) is in good agreement with the one published in 2010, but 1.7 times as precise. The discrepancy with existing radius measurements made in regular hydrogen or by electron-proton-scattering, the so-called proton size puzzle, has thus been reaffirmed.

In addition, the new measurement allows a determination of the magnetic radius of the proton for the first time by laser spectroscopy of muonic hydrogen. This results in a value of 0.87(6) femtometres, in agreement with all previous measurements. Though the precision is, at present, of the same order as in other experiments, laser spectroscopy of muonic hydrogen has the potential of achieving a much better accuracy in the determination of the magnetic proton radius in the future.

Physicists around the world are actively seeking a solution to the proton size puzzle. Previous measurements in regular hydrogen and by electron-proton-scattering are being reanalyzed and even repeated. Theorists of various disciplines suggested ways to explain the discrepancy. Very interesting proposals explain the discrepancies by physics beyond the standard model. Other explanations suggest a proton structure of higher complexity than assumed today which only reveals itself under the influence of the heavy muon. New measurements are needed to check on these possibilities. Muon-proton-scattering experiments are being developed at PSI, new precision measurements at the electron accelerator in Mainz are being considered, and the PSI team plans to measure, for the first time ever, laser spectroscopy of the muonic helium atom in the course of this year. The required modifications of the current laser system are being investigated in the frame of the project “Thin-disk laser for muonic atoms spectroscopy” which (financed by the Swiss National Science Foundation (SNSF) and the Deutsche Forschungsgemeinschaft (DFG)) is carried out at the ETH Zürich (Prof. Dr. Klaus Kirch, Dr. Aldo Antognini) and at the IFSW (Prof. Dr. Thomas Graf, Dr. Andreas Voß). The Project “Muonic Helium” is also generously supported by the European Research Council (ERC) by an ERC Starting Grant held by Dr. Randolf Pohl from the MPQ in Garching.

Olivia Meyer-Streng

Original publication:
Aldo Antognini, François Nez, Karsten Schuhmann, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W. Hänsch, Paul Indelicato, Lucile Julien, Cheng-Yang Kao, Paul Knowles, Franz Kottmann, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Catherine Schwob, David Taqqu, João F. C. A. Veloso, Jan Vogelsang, Randolf Pohl
Proton structure from the measurement of 2S − 2P transition frequencies of muonic hydrogen

Science, January 25, 2013

The experiment was the collaborative success of many institutes from various countries: Max-Planck-Institute of Quantum Optics, Garching, Germany, Institute for Particle Physics, ETH Zurich, Switzerland, Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, and Université P. et M. Curie, Paris, France, Dausinger & Giesen GmbH, Stuttgart, Germany, Departamento de Física, Universidade de Coimbra, Portugal, Departamento de Física, Universidade de Aveiro, Portugal, Physics Department, Yale University, New Haven, USA, Institut für Strahlwerkzeuge, Universität Stuttgart, Germany, Physics Department, National Tsing Hua University, Hsinchu, Taiwan, Département de Physique, Université de Fribourg, Switzerland, Department of Chemistry, Princeton University, Princeton, USA, Paul Scherrer Institute, Villigen, Switzerland, Ludwig-MaximiliansUniversität, Munich, Germany

Contact:
Dr. Randolf Pohl
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 32905 -281
Fax: +49 (0)89 / 32905 -200
E-mail: randolf.pohl@mpq.mpg.de
http://www.mpq.mpg.de/~rnp/
Dr. Aldo Antognini
ETH Zürich
CH-8093 Zürich
Phone: +41 (0)56 310 4614
+41 (0)44 633 2031
E-mail: aldo@phys.ethz.ch
https://muhy.web.psi.ch/wiki/
Prof. Dr. Theodor W. Hänsch
Chair of Experimental Physics,
Ludwig-Maximilians-Universität, Munich
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1,
85748 Garching
Phone: +49 (0)89 / 32905 -702/712
Fax: +49 (0)89 / 32905 -312
E-mail: t.w.haensch@mpq.mpg.de
Prof. Dr. Thomas Graf
Universität Stuttgart
Institut für Strahlwerkzeuge
Pfaffenwaldring 43
D-70569 Stuttgart
Phone: +49 (0)711 68566840
E-mail: graf@ifsw.uni-stuttgart.de
Dr. Franz Kottmann
Paul Scherrer Institut
CH-5232 Villigen
Phone: +41 (0) 56 310 3502
E-mail: franz.kottmann@psi.ch
Karsten Schuhmann
ETH Zürich
CH-8093 Zürich
Phone: +41 (0)44 633 2031
E-mail: skarsten@phys.ethz.ch
and
Daunsinger & Giesen GmbH
Rotebühlstrasse 87
D-70178 Stuttgart

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>