Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prediction of Intrinsic Magnetism at Silicon Surfaces Could Lead to Single-Spin Magnetoelectronics

27.08.2010
The integration of single-spin magnetoelectronics into standard silicon technology may soon be possible, if experiments confirm a new theoretical prediction by physicists at the Naval Research Laboratory and the University of Wisconsin-Madison.

The researchers predict that a family of well-known silicon surfaces, stabilized by small amounts of gold atoms, is intrinsically magnetic despite having no magnetic elements. None of these surfaces has yet been investigated experimentally for magnetism, but the new predictions are already supported indirectly by existing data. The complete findings of the study are published in the August 24, 2010, issue of the journal Nature Communications.

Silicon provides a unique entry point for combining magnetoelectronics based on single spins with standard electronics technology. If a single-spin device can be built on a silicon wafer, input and output electronics can be directly integrated with the magnetic part of the device. This has been an obstacle for current spintronics approaches. For example, spin injection from a metal into silicon is very inefficient unless the metal/semiconductor interface is carefully optimized.

These latest results have the advantage that nature itself guides, by a self-assembly process, the formation of long chains of polarized electron spins with atomically precise structural order. "This integration of structural and magnetic order is crucial for future technologies based on single spins at the atomic level" said Dr. Steven Erwin, a physicist at NRL and lead theorist on the project.

The magnetic silicon surfaces, one of which is illustrated here, naturally form steps which are stabilized by chains of gold atoms (yellow). According to the team's calculations, some of the silicon atoms at the step edges have unpaired electrons that are fully spin polarized and probably magnetically ordered at sufficiently low temperatures.

The atom chains on the Si(553)-Au surface were discovered in the group of co-author Dr. Franz Himpsel at the University of Wisconsin-Madison. Several other groups worldwide have been investigating such "one-dimensional" silicon surfaces in recent years. As Himpsel noted, "The idea of creating magnetism in a nonmagnetic material by manipulating its structure has long intrigued scientists. The hope of realizing this idea in silicon has been widely discussed for decades, but so far none of these speculations has held up under scrutiny."

The work of Erwin and Himpsel suggests several experiments, such as spin-polarized scanning tunneling microscopy, to test their predictions directly. But there is already indirect experimental evidence to support the possibility of magnetism at silicon surfaces. Two research groups, at Yonsei University in Korea and at Oak Ridge National Laboratory in the US, have found that Si(553)-Au develops periodic "ripples" with two different periodicities at low temperatures. One ripple occurs along the silicon step edges with three times the normal periodicity, and the other along the gold chains with two times the normal periodicity. The prediction of Erwin and Himpsel, shown here, reproduces this pattern perfectly. Moreover, this pattern only emerges when magnetism is allowed in the calculation. When magnetism is "turned off" in the theory, the ripples completely vanish. Thus the observation of threefold and twofold ripples offers indirect - if preliminary - confirmation of magnetism.

Linear chains of spin-polarized atoms provide atomically perfect templates for the ultimate memory and logic, in which a single spin represents a bit. One potential application is a "spin shift register" recently proposed theoretically by Gerald D. Mahan, a theoretical physicist at Pennsylvania State University. Another application is the storage of information in single magnetic atoms. Erwin and Himpsel's work also predicts that the magnitude, and even the sign, of the spin coupling can be changed by doping electrons or holes into surface states. The closely related Si(111)-Au surface can be electron-doped by adsorbates (for example, silicon adatoms) on the surface. By varying this adsorbate population one can perform band-structure engineering with extraordinary precision. The possibility of tuning surface magnetism on Si(553)-Au and its relatives using surface chemistry suggests a fascinating new research direction. This work was supported by the Office of Naval Research and by National Science Foundation awards.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil/media/news-releases/105-10r/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>