Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pounding particles to create Neptune's water in the lab

22.07.2010
We know 'icy' Neptune is partially comprised of water molecules but until now we have had little means to test how water behaves in the extreme conditions that Neptune presents.

This is about to change as an international group of physicists draw up plans to use the new Facility for Antiprotons and Ion Research (FAIR) in Germany, which will be ready in 2015, to expose water molecules to heavy ion beams and thereby generate the same level of pressure on the water molecules that they experience within the very inhospitable core of Neptune.

The new plans being published in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society) today, Thursday 22 July, explain how using high energy uranium beams in the future German facility is going to enable researchers to create conditions that push water molecules into a 'superionic' state and thereby observe water in conditions never before replicated.

The predicted 'superionic' state is an exotic hybrid phase of water composed of an oxygen lattice and a hydrogen liquid which under ambient conditions form stable H2O molecules in an ice lattice or in a liquid.

A total of 15 European, Russian and Chinese researchers from GSI Helmholzzentrun für Schwerionenforschung, Universität Rostock, Universidad de Castilla-La Mancha, Universite Paris-Sud, the Russian Academy of Sciences, and the Chinese Academy of Science explain how the use of the new heavy ion beams can simulate pressures up to several million times greater than anything on the surface of the Earth.

The researchers suggest that research into this 'superionic' state could be of paramount importance for the understanding of the magnetic field of Neptune and Uranus, which are very different from that of the Earth's.

The researchers cite the past decade's progress in the technology of strongly bunched, well focused, high quality intense heavy ion beams as the enabling force for this experiment - such beams will be made available when construction of FAIR is complete.

The heavy ion beams, which will be generated by the new particle accelerator at FAIR, will have advantages over other methods of exposing particles to high pressure, such as high explosives, gas guns, lasers, or pulsed power, because they will be able to apply a more uniform and more targeted pressure on the water molecules.

The researchers write, "The FAIR accelerator facilities will provide very powerful high quality heavy ion beams with unprecedented intensities. Extensive theoretical work on beam matter heating over the past decade has shown that the ion beams that will be generated at FAIR will be a very unique and very efficient tool to study High Energy Density Particles in those regions of the parameter space that are not so easy to access with the traditional method."

The article will be permanently free to read from Thursday 22 July at http://iopscience.iop.org/1367-2630/12/7/073022

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

Further reports about: Chinese herbs Neptune ion beam water molecule

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>