Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pounding particles to create Neptune's water in the lab

22.07.2010
We know 'icy' Neptune is partially comprised of water molecules but until now we have had little means to test how water behaves in the extreme conditions that Neptune presents.

This is about to change as an international group of physicists draw up plans to use the new Facility for Antiprotons and Ion Research (FAIR) in Germany, which will be ready in 2015, to expose water molecules to heavy ion beams and thereby generate the same level of pressure on the water molecules that they experience within the very inhospitable core of Neptune.

The new plans being published in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society) today, Thursday 22 July, explain how using high energy uranium beams in the future German facility is going to enable researchers to create conditions that push water molecules into a 'superionic' state and thereby observe water in conditions never before replicated.

The predicted 'superionic' state is an exotic hybrid phase of water composed of an oxygen lattice and a hydrogen liquid which under ambient conditions form stable H2O molecules in an ice lattice or in a liquid.

A total of 15 European, Russian and Chinese researchers from GSI Helmholzzentrun für Schwerionenforschung, Universität Rostock, Universidad de Castilla-La Mancha, Universite Paris-Sud, the Russian Academy of Sciences, and the Chinese Academy of Science explain how the use of the new heavy ion beams can simulate pressures up to several million times greater than anything on the surface of the Earth.

The researchers suggest that research into this 'superionic' state could be of paramount importance for the understanding of the magnetic field of Neptune and Uranus, which are very different from that of the Earth's.

The researchers cite the past decade's progress in the technology of strongly bunched, well focused, high quality intense heavy ion beams as the enabling force for this experiment - such beams will be made available when construction of FAIR is complete.

The heavy ion beams, which will be generated by the new particle accelerator at FAIR, will have advantages over other methods of exposing particles to high pressure, such as high explosives, gas guns, lasers, or pulsed power, because they will be able to apply a more uniform and more targeted pressure on the water molecules.

The researchers write, "The FAIR accelerator facilities will provide very powerful high quality heavy ion beams with unprecedented intensities. Extensive theoretical work on beam matter heating over the past decade has shown that the ion beams that will be generated at FAIR will be a very unique and very efficient tool to study High Energy Density Particles in those regions of the parameter space that are not so easy to access with the traditional method."

The article will be permanently free to read from Thursday 22 July at http://iopscience.iop.org/1367-2630/12/7/073022

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

Further reports about: Chinese herbs Neptune ion beam water molecule

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>