Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics Lab Becoming A Frontrunner in Ultrafast Laser Research

30.10.2008
The J.R. Macdonald Laboratory at Kansas State University has shifted its research focus to ultrafast laser science. This change in emphasis could lead to innovations benefiting medicine, energy and other technologies.

For decades, the J.R. Macdonald Laboratory at Kansas State University has been known worldwide as a center for atomic collision physics using particle accelerators. Now, researchers at the lab are working toward making it known for ultrafast laser science.

The Macdonald Lab is the main part of the K-State atomic, molecular and optical physics program, which has ranked in the top 20 in the nation out of all such university programs, according to U.S. News and World Report. In recent years the lab has shifted its research focus to ultrafast laser science. This change in emphasis was marked with the installation of the Kansas Light Source, an intense ultrafast laser, a few years ago.

"There are advantages to both ultrafast laser research and accelerator research," said Itzik Ben-Itzhak, Macdonald Lab director and K-State professor of physics. "But the laser gives you the ability to control a reaction occurring within a molecule and not just to observe that phenomenon. Just imagine what opportunities such control could lead to in molecular engineering."

In a nutshell, he said, this is the key advantage for probing matter with lasers rather than collisions, which are nearly impossible to control.

The basic physics research at K-State's Macdonald Lab could one day enable researchers to tailor molecules to improve health care, energy and security. Ben-Itzhak said that the Macdonald Lab's work to investigate these fundamental processes and find out the optimal laser characteristics -- such as intensity, pulse duration and spectrum -- is the first step on a long road.

"We're not trying to be solely a laser technology lab," Ben-Itzhak said. "Rather, we are interested in studying laser-matter interactions on the atomic and molecular scale. However, in order to be in the forefront of this rapidly evolving field, we have to have the right balance between developing our laser technology, i.e. instrumental capabilities, and immediately interrogating matter with them."

The Macdonald Lab includes nine K-State faculty experts and brings in $2.5 million of U.S. Department of Energy support annually.

"If you exclude national laboratories, we have the biggest support within our program area in the Department of Energy," Ben-Itzhak said.

Along with Ben-Itzhak, the department of physics faculty include: Zenghu Chang, professor; Lew Cocke, distinguished professor; Brett DePaola, professor; Brett Esry, professor; Vinod Kumarappan, assistant professor; Chii-Dong Lin, distinguished professor; Igor Litvinyuk, assistant professor; and Uwe Thumm, professor. Research faculty include: Kevin Carnes, associate research professor; Charles Fehrenbach, research assistant professor; and An Thu Le, research assistant professor. Also included are atomic, molecular and optical physics program faculty Kristan Corwin, associate professor, and Brian Washburn, assistant professor.

These researchers leverage the DOE funding and the infrastructure it provides to bring in additional funding from the National Science Foundation, the Army Research Office and the Air Force Office of Scientific Research, among other sources. All together, the atomic, molecular and optical physics group brings in more than $4.7 million per year in grants.

In addition to the Macdonald Lab members, the Kansas Light Source also is used by others at K-State. For example, Shuting Lei, associate professor of industrial and manufacturing systems engineering, and his group members from the department use the lasers to drill holes because they are much cooler, temperature-wise, than using a drill press.

"Our goal is to be one of the top ultrafast labs for atomic, molecular and optical physics in the world. We want to draw people from around the world," Ben-Itzhak said. "What can we provide that will bring them here? We need to be an environment that is welcoming and friendly to other researchers. But they wouldn't be coming here unless there's also strong research and advanced laser technology."

Ben-Itzhak said the lab is currently suffering a bit from its own success. The switch to ultrafast laser science has generated such a demand for laser time that the laser resources available are no longer sufficient. In fact, the productivity of the lab is now limited primarily by laser time, he said. That's why the lab is working to acquire another laser that can provide new research opportunities in addition to relieving the logjam on laser time.

The atomic, molecular and optical physics group is also working to elevate the Macdonald Lab's profile in ultrafast laser science, which includes serving as host to an international conference in summer 2009 that will draw scientists from around the world.

"People from all over the world came to do atomic collision research at Kansas State University in the past," Ben-Itzhak said. "Now the question is, can we attract them to come for ultrafast laser science?"

Itzik Ben-Itzhak, 785-532-1636, ibi@phys.ksu.edu

Itzik Ben-Itzhak | Newswise Science News
Further information:
http://www.phys.ksu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>