Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physics Lab Becoming A Frontrunner in Ultrafast Laser Research

The J.R. Macdonald Laboratory at Kansas State University has shifted its research focus to ultrafast laser science. This change in emphasis could lead to innovations benefiting medicine, energy and other technologies.

For decades, the J.R. Macdonald Laboratory at Kansas State University has been known worldwide as a center for atomic collision physics using particle accelerators. Now, researchers at the lab are working toward making it known for ultrafast laser science.

The Macdonald Lab is the main part of the K-State atomic, molecular and optical physics program, which has ranked in the top 20 in the nation out of all such university programs, according to U.S. News and World Report. In recent years the lab has shifted its research focus to ultrafast laser science. This change in emphasis was marked with the installation of the Kansas Light Source, an intense ultrafast laser, a few years ago.

"There are advantages to both ultrafast laser research and accelerator research," said Itzik Ben-Itzhak, Macdonald Lab director and K-State professor of physics. "But the laser gives you the ability to control a reaction occurring within a molecule and not just to observe that phenomenon. Just imagine what opportunities such control could lead to in molecular engineering."

In a nutshell, he said, this is the key advantage for probing matter with lasers rather than collisions, which are nearly impossible to control.

The basic physics research at K-State's Macdonald Lab could one day enable researchers to tailor molecules to improve health care, energy and security. Ben-Itzhak said that the Macdonald Lab's work to investigate these fundamental processes and find out the optimal laser characteristics -- such as intensity, pulse duration and spectrum -- is the first step on a long road.

"We're not trying to be solely a laser technology lab," Ben-Itzhak said. "Rather, we are interested in studying laser-matter interactions on the atomic and molecular scale. However, in order to be in the forefront of this rapidly evolving field, we have to have the right balance between developing our laser technology, i.e. instrumental capabilities, and immediately interrogating matter with them."

The Macdonald Lab includes nine K-State faculty experts and brings in $2.5 million of U.S. Department of Energy support annually.

"If you exclude national laboratories, we have the biggest support within our program area in the Department of Energy," Ben-Itzhak said.

Along with Ben-Itzhak, the department of physics faculty include: Zenghu Chang, professor; Lew Cocke, distinguished professor; Brett DePaola, professor; Brett Esry, professor; Vinod Kumarappan, assistant professor; Chii-Dong Lin, distinguished professor; Igor Litvinyuk, assistant professor; and Uwe Thumm, professor. Research faculty include: Kevin Carnes, associate research professor; Charles Fehrenbach, research assistant professor; and An Thu Le, research assistant professor. Also included are atomic, molecular and optical physics program faculty Kristan Corwin, associate professor, and Brian Washburn, assistant professor.

These researchers leverage the DOE funding and the infrastructure it provides to bring in additional funding from the National Science Foundation, the Army Research Office and the Air Force Office of Scientific Research, among other sources. All together, the atomic, molecular and optical physics group brings in more than $4.7 million per year in grants.

In addition to the Macdonald Lab members, the Kansas Light Source also is used by others at K-State. For example, Shuting Lei, associate professor of industrial and manufacturing systems engineering, and his group members from the department use the lasers to drill holes because they are much cooler, temperature-wise, than using a drill press.

"Our goal is to be one of the top ultrafast labs for atomic, molecular and optical physics in the world. We want to draw people from around the world," Ben-Itzhak said. "What can we provide that will bring them here? We need to be an environment that is welcoming and friendly to other researchers. But they wouldn't be coming here unless there's also strong research and advanced laser technology."

Ben-Itzhak said the lab is currently suffering a bit from its own success. The switch to ultrafast laser science has generated such a demand for laser time that the laser resources available are no longer sufficient. In fact, the productivity of the lab is now limited primarily by laser time, he said. That's why the lab is working to acquire another laser that can provide new research opportunities in addition to relieving the logjam on laser time.

The atomic, molecular and optical physics group is also working to elevate the Macdonald Lab's profile in ultrafast laser science, which includes serving as host to an international conference in summer 2009 that will draw scientists from around the world.

"People from all over the world came to do atomic collision research at Kansas State University in the past," Ben-Itzhak said. "Now the question is, can we attract them to come for ultrafast laser science?"

Itzik Ben-Itzhak, 785-532-1636,

Itzik Ben-Itzhak | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>