Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics Lab Becoming A Frontrunner in Ultrafast Laser Research

30.10.2008
The J.R. Macdonald Laboratory at Kansas State University has shifted its research focus to ultrafast laser science. This change in emphasis could lead to innovations benefiting medicine, energy and other technologies.

For decades, the J.R. Macdonald Laboratory at Kansas State University has been known worldwide as a center for atomic collision physics using particle accelerators. Now, researchers at the lab are working toward making it known for ultrafast laser science.

The Macdonald Lab is the main part of the K-State atomic, molecular and optical physics program, which has ranked in the top 20 in the nation out of all such university programs, according to U.S. News and World Report. In recent years the lab has shifted its research focus to ultrafast laser science. This change in emphasis was marked with the installation of the Kansas Light Source, an intense ultrafast laser, a few years ago.

"There are advantages to both ultrafast laser research and accelerator research," said Itzik Ben-Itzhak, Macdonald Lab director and K-State professor of physics. "But the laser gives you the ability to control a reaction occurring within a molecule and not just to observe that phenomenon. Just imagine what opportunities such control could lead to in molecular engineering."

In a nutshell, he said, this is the key advantage for probing matter with lasers rather than collisions, which are nearly impossible to control.

The basic physics research at K-State's Macdonald Lab could one day enable researchers to tailor molecules to improve health care, energy and security. Ben-Itzhak said that the Macdonald Lab's work to investigate these fundamental processes and find out the optimal laser characteristics -- such as intensity, pulse duration and spectrum -- is the first step on a long road.

"We're not trying to be solely a laser technology lab," Ben-Itzhak said. "Rather, we are interested in studying laser-matter interactions on the atomic and molecular scale. However, in order to be in the forefront of this rapidly evolving field, we have to have the right balance between developing our laser technology, i.e. instrumental capabilities, and immediately interrogating matter with them."

The Macdonald Lab includes nine K-State faculty experts and brings in $2.5 million of U.S. Department of Energy support annually.

"If you exclude national laboratories, we have the biggest support within our program area in the Department of Energy," Ben-Itzhak said.

Along with Ben-Itzhak, the department of physics faculty include: Zenghu Chang, professor; Lew Cocke, distinguished professor; Brett DePaola, professor; Brett Esry, professor; Vinod Kumarappan, assistant professor; Chii-Dong Lin, distinguished professor; Igor Litvinyuk, assistant professor; and Uwe Thumm, professor. Research faculty include: Kevin Carnes, associate research professor; Charles Fehrenbach, research assistant professor; and An Thu Le, research assistant professor. Also included are atomic, molecular and optical physics program faculty Kristan Corwin, associate professor, and Brian Washburn, assistant professor.

These researchers leverage the DOE funding and the infrastructure it provides to bring in additional funding from the National Science Foundation, the Army Research Office and the Air Force Office of Scientific Research, among other sources. All together, the atomic, molecular and optical physics group brings in more than $4.7 million per year in grants.

In addition to the Macdonald Lab members, the Kansas Light Source also is used by others at K-State. For example, Shuting Lei, associate professor of industrial and manufacturing systems engineering, and his group members from the department use the lasers to drill holes because they are much cooler, temperature-wise, than using a drill press.

"Our goal is to be one of the top ultrafast labs for atomic, molecular and optical physics in the world. We want to draw people from around the world," Ben-Itzhak said. "What can we provide that will bring them here? We need to be an environment that is welcoming and friendly to other researchers. But they wouldn't be coming here unless there's also strong research and advanced laser technology."

Ben-Itzhak said the lab is currently suffering a bit from its own success. The switch to ultrafast laser science has generated such a demand for laser time that the laser resources available are no longer sufficient. In fact, the productivity of the lab is now limited primarily by laser time, he said. That's why the lab is working to acquire another laser that can provide new research opportunities in addition to relieving the logjam on laser time.

The atomic, molecular and optical physics group is also working to elevate the Macdonald Lab's profile in ultrafast laser science, which includes serving as host to an international conference in summer 2009 that will draw scientists from around the world.

"People from all over the world came to do atomic collision research at Kansas State University in the past," Ben-Itzhak said. "Now the question is, can we attract them to come for ultrafast laser science?"

Itzik Ben-Itzhak, 785-532-1636, ibi@phys.ksu.edu

Itzik Ben-Itzhak | Newswise Science News
Further information:
http://www.phys.ksu.edu

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>