Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists set strongest limit on mass of dark matter

24.11.2011
Brown University physicists have set the strongest limit for the mass of dark matter, the mysterious particles believed to make up nearly a quarter of the universe. The researchers report in Physical Review Letters that dark matter must have a mass greater than 40 giga-electron volts. The distinction is important because it casts doubt on recent results from underground experiments that have reported detecting dark matter.

If dark matter exists in the universe, scientists now have set the strongest limit to date on its mass.


View of the universe from NASA's Fermi Gamma-ray Space Telescope. Credit: Koushiappas and Geringer-Sameth/Brown University

In a paper to be published on Dec. 1 in Physical Review Letters (available in pdf), Brown University assistant professor Savvas Koushiappas and graduate student Alex Geringer-Sameth report that dark matter must have a mass greater than 40 giga-electron volts in dark-matter collisions involving heavy quarks. (The masses of elementary particles are regularly expressed in term of electron volts.) Using publicly available data collected from an instrument on NASA’s Fermi Gamma-ray Space Telescope and a novel statistical approach, the Brown pair constrained the mass of dark matter particles by calculating the rate at which the particles are thought to cancel each other out in galaxies that orbit the Milky Way galaxy.

“What we find is if a particle’s mass is less than 40 GeV, then it cannot be the dark matter particle,” Koushiappas said.

The observational measurements are important because they cast doubt on recent results from dark matter collaborations that have reported detecting the elusive particle in underground experiments. Those collaborations – DAMA/LIBRA, CoGeNT and CRESST – say they found dark matter with masses ranging from 7 to 12 GeV, less than the limit determined by the Brown physicists.

“If for the sake of argument a dark matter particle’s mass is less than 40 GeV, it means the amount of dark matter in the universe today would be so much that the universe would not be expanding at the accelerated rate we observe,” Koushiappas said, referring to the 2011 Nobel prize in physics that was awarded for the discovery that the expansion of the universe is accelerating.

The Fermi-LAT Collaboration, an international scientific collaboration, arrived at similar results, using a different methodology. The Brown and Fermi-LAT collaboration papers will be published in the same issue of Physical Review Letters.

Physicists believe everything that can be seen — planets, stars, galaxies and all else — makes up only 4 percent of the universe. Observations indicate that dark matter accounts for about 23 percent of the universe, while the remaining part is made up of dark energy, the force believed to cause the universe’s accelerated expansion. The problem is dark matter and dark energy do not emit electromagnetic radiation like stars and planets; they can be “seen” only through their gravitational effects. Its shadowy profile and its heavy mass are the main reasons why dark matter is suspected to be a weakly interacting massive particle (WIMP), which makes it very difficult to study.

What physicists do know is that when a WIMP and its anti-particle collide in a process known as annihilation, the debris spewed forth is comprised of heavy quarks and leptons. Physicists also know that when a quark and its anti-quark sibling annihilate, they produce a jet of particles that includes photons, or light.

Koushiappas and Geringer-Sameth in essence reversed the annihilation chain reaction. They set their sights on seven dwarf galaxies which observations show are full of dark matter because their stars’ motion cannot be fully explained by their mass alone. These dwarf galaxies also are largely bereft of hydrogen gas and other common matter, meaning they offer a blank canvas to better observe dark matter and its effects. “There’s a high signal-to-noise ratio. They’re clean systems,” Koushiappas said.

The pair analyzed gamma ray data collected over the last three years by the Fermi telescope to measure the number of photons in the dwarf galaxies. From the number of photons, the Brown researchers were able to determine the rate of quark production, which, in turn, allowed them to establish constraints on the mass of dark matter particles and the rate at which they annihilate.

“This is the first time that we can exclude generic WIMP particles that could account for the abundance of dark matter in the universe,” Koushiappas said.

Geringer-Sameth developed the statistical framework to analyze the data and then applied it to observations of the dwarf galaxies. “This is a very exciting time in the dark matter search, because many experimental tools are finally catching up to long-standing theories about what dark matter actually is,” said Geringer-Sameth, from Croton-on-Hudson, N.Y. “We are starting to really put these theories to the test.”

The National Science Foundation funded the research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: Fermi Fermi-LAT Milky Way dark energy dark matter gravitational effect

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>