Physicists observe amplification of an optical signal within cubic nonlinear nanostructures

Left: A scheme of nonlinear interaction of a plasmonic pump and localized, and, as a result, Stimulated Raman Scattering occurs Right: A plot of scattered intensity vs the pump power Credit: Kazan Federal University

The coherent amplification of a localized optical signal within a planar titanium nitride nanoantenna has been achieved by scientists of Kazan Federal University (under the leadership of Sergey Kharintsev) and physicists from Harvard University, Nazarbayev University, and Imperial College London.

The results have been recently published in Nano Letters.

“The observable phenomenon is based on the nonlinear interaction of surface plasmon-polaritons and localized Stokes wave”, explained Dr. Kharintsev.

“Stimulated Raman (gain) emission and (loss) absorption of light are generated within a planar TiN nanoantenna exposed to a continuous laser wave with a modest power”.

According to the physicists, these results will contribute to the development of a novel area in material sciences, in which plasmonic, Raman-active, and refractory materials are studied for amplifying optical signals beyond the diffraction limit of light.

Media Contact

Sergey Kharintsev
skharint@gmail.com

 @KazanUni

http://kpfu.ru/eng 

Media Contact

Sergey Kharintsev EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors