Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists from Mainz University develop a quantum interface between light and atoms

21.05.2010
Ultra-thin glass fiber enables the controlled coupling of light and matter / publication in Physical Review Letters

Physicists at the Johannes Gutenberg University Mainz have developed a quantum interface which connects light particles and atoms. The interface is based on an ultra-thin glass fiber and is suitable for the transmission of quantum information.

This is an essential prerequisite for quantum communication which shall be used for secure data transmission via quantum cryptography. "Our quantum interface might also prove useful for the realization of a quantum computer," adds Professor Dr Arno Rauschenbeutel from the Institute of Physics at Mainz University.

Today, telephone and internet primarily rely on the optical transmission of data using glass fiber cables. In that sense, glass fiber networks can be considered as the backbone of the modern communication society. The light that travels through them is not a continuous flow of energy. It rather consists, as was discovered by Albert Einstein, of indivisible energy quanta, or photons. Each photon can then transmit one bit of information, corresponding to a zero or one. In addition to being very efficient, this also opens the route towards entirely new ways of communication because, being quantum objects, photons can exist simultaneously in both states, zero and one.

As an example, this property is what makes quantum cryptography possible and thereby enables absolute protection against eavesdropping. In order to fully exploit the potential of quantum communication, however, one additionally needs the possibility to store the quantum information that is encoded on each photon. Photons themselves are not well suited for this purpose because one cannot hold them at a given position. Therefore, it would be much more advantageous to transfer the quantum information to atoms. For this purpose one thus requires a quantum interface between photons and atoms which should ideally be easily integrated into glass fiber networks.

A group of physicists led by Professor Arno Rauschenbeutel at the Johannes Gutenberg University Mainz, Germany, has now realized such a glass fiber-based quantum interface. As reported by the research team in the current issue of the scientific journal Physical Review Letters, the central part of the work in Mainz is a glass fiber which has been heated and stretched until it measures only one hundredth of the diameter of a human hair. Remarkably, this nanofiber is thinner than the wavelength of the light it guides. As a consequence, the light is no longer restricted to the inside of the nanofiber but laterally protrudes into the space surrounding the fiber. Using this so-called evanescent field, the scientists trapped cesium atoms after they have been cooled to a few millionth of a degree above absolute zero by irradiation with suitably chosen laser light. When trapped, the atoms are arranged in a regular pattern and are levitated 200 nm above the surface of the nanofiber. This distance might seem very small but it indeed is big enough to protect the atoms from the spurious influences of the fiber surface. At the same time, the atoms reside in the evanescent field and thus interact with the photons propagating through the nanofiber.

As was demonstrated by the Mainz researchers, this process is so efficient that only a couple of thousand atoms should suffice for a close to lossless transfer of quantum information between photons and atoms. Further possible applications of the Mainz quantum interface include the connection of different quantum systems. As an example, the trapped atoms could be brought into close vicinity of a superconducting quantum circuit in order to combine the advantageous properties of both systems. This would then be an important step towards the realization of a quantum computer.

Weitere Informationen:
http://www.uni-mainz.de/eng/13579.php - press release online ;
http://prl.aps.org/abstract/PRL/v104/i20/e203603 - publication

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>