Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists from Mainz University develop a quantum interface between light and atoms

21.05.2010
Ultra-thin glass fiber enables the controlled coupling of light and matter / publication in Physical Review Letters

Physicists at the Johannes Gutenberg University Mainz have developed a quantum interface which connects light particles and atoms. The interface is based on an ultra-thin glass fiber and is suitable for the transmission of quantum information.

This is an essential prerequisite for quantum communication which shall be used for secure data transmission via quantum cryptography. "Our quantum interface might also prove useful for the realization of a quantum computer," adds Professor Dr Arno Rauschenbeutel from the Institute of Physics at Mainz University.

Today, telephone and internet primarily rely on the optical transmission of data using glass fiber cables. In that sense, glass fiber networks can be considered as the backbone of the modern communication society. The light that travels through them is not a continuous flow of energy. It rather consists, as was discovered by Albert Einstein, of indivisible energy quanta, or photons. Each photon can then transmit one bit of information, corresponding to a zero or one. In addition to being very efficient, this also opens the route towards entirely new ways of communication because, being quantum objects, photons can exist simultaneously in both states, zero and one.

As an example, this property is what makes quantum cryptography possible and thereby enables absolute protection against eavesdropping. In order to fully exploit the potential of quantum communication, however, one additionally needs the possibility to store the quantum information that is encoded on each photon. Photons themselves are not well suited for this purpose because one cannot hold them at a given position. Therefore, it would be much more advantageous to transfer the quantum information to atoms. For this purpose one thus requires a quantum interface between photons and atoms which should ideally be easily integrated into glass fiber networks.

A group of physicists led by Professor Arno Rauschenbeutel at the Johannes Gutenberg University Mainz, Germany, has now realized such a glass fiber-based quantum interface. As reported by the research team in the current issue of the scientific journal Physical Review Letters, the central part of the work in Mainz is a glass fiber which has been heated and stretched until it measures only one hundredth of the diameter of a human hair. Remarkably, this nanofiber is thinner than the wavelength of the light it guides. As a consequence, the light is no longer restricted to the inside of the nanofiber but laterally protrudes into the space surrounding the fiber. Using this so-called evanescent field, the scientists trapped cesium atoms after they have been cooled to a few millionth of a degree above absolute zero by irradiation with suitably chosen laser light. When trapped, the atoms are arranged in a regular pattern and are levitated 200 nm above the surface of the nanofiber. This distance might seem very small but it indeed is big enough to protect the atoms from the spurious influences of the fiber surface. At the same time, the atoms reside in the evanescent field and thus interact with the photons propagating through the nanofiber.

As was demonstrated by the Mainz researchers, this process is so efficient that only a couple of thousand atoms should suffice for a close to lossless transfer of quantum information between photons and atoms. Further possible applications of the Mainz quantum interface include the connection of different quantum systems. As an example, the trapped atoms could be brought into close vicinity of a superconducting quantum circuit in order to combine the advantageous properties of both systems. This would then be an important step towards the realization of a quantum computer.

Weitere Informationen:
http://www.uni-mainz.de/eng/13579.php - press release online ;
http://prl.aps.org/abstract/PRL/v104/i20/e203603 - publication

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>